YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Atmospheric Response to Surface Heating under Maximum Entropy Production

    Source: Journal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 006::page 2204
    Author:
    Gjermundsen, A.
    ,
    LaCasce, J. H.
    ,
    Graff, L. S.
    DOI: 10.1175/JAS-D-13-0181.1
    Publisher: American Meteorological Society
    Abstract: n numerous studies, midlatitude storm tracks have been shown to shift poleward under global warming scenarios. Among the possible causes, changes in sea surface temperature (SST) have been shown to affect both the intensity and the position of the tracks. Increased SSTs can increase both the lateral heating occurring in the tropics and the midlatitude temperature gradients, both of which increase tropospheric baroclinicity.To better understand the response to altered SST, a simplified energy balance model (EBM) is used. This employs the principal of maximum entropy production (MEP) to determine the meridional heat fluxes in the atmosphere. The model is similar to one proposed by Paltridge (1975) but represents only the atmospheric response (the surface temperatures are fixed). The model is then compared with a full atmospheric general circulation model [Community Atmosphere Model, version 3 (CAM3)].In response to perturbed surface temperatures, EBM exhibits similar changes in (vertically integrated) air temperature, convective heat fluxes, and meridional heat transport. However, the changes in CAM3 are often more localized, particularly at low latitudes. This, in turn, results in a shift of the storm tracks in CAM3, which is largely absent in EBM. EBM is more successful, however, at representing the response to changes in high-latitude heating or cooling. Therefore, MEP is evidently a plausible representation for heat transport in the midlatitudes, but not necessarily at low latitudes.
    • Download: (1.984Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Atmospheric Response to Surface Heating under Maximum Entropy Production

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219282
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorGjermundsen, A.
    contributor authorLaCasce, J. H.
    contributor authorGraff, L. S.
    date accessioned2017-06-09T16:56:33Z
    date available2017-06-09T16:56:33Z
    date copyright2014/06/01
    date issued2014
    identifier issn0022-4928
    identifier otherams-76796.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219282
    description abstractn numerous studies, midlatitude storm tracks have been shown to shift poleward under global warming scenarios. Among the possible causes, changes in sea surface temperature (SST) have been shown to affect both the intensity and the position of the tracks. Increased SSTs can increase both the lateral heating occurring in the tropics and the midlatitude temperature gradients, both of which increase tropospheric baroclinicity.To better understand the response to altered SST, a simplified energy balance model (EBM) is used. This employs the principal of maximum entropy production (MEP) to determine the meridional heat fluxes in the atmosphere. The model is similar to one proposed by Paltridge (1975) but represents only the atmospheric response (the surface temperatures are fixed). The model is then compared with a full atmospheric general circulation model [Community Atmosphere Model, version 3 (CAM3)].In response to perturbed surface temperatures, EBM exhibits similar changes in (vertically integrated) air temperature, convective heat fluxes, and meridional heat transport. However, the changes in CAM3 are often more localized, particularly at low latitudes. This, in turn, results in a shift of the storm tracks in CAM3, which is largely absent in EBM. EBM is more successful, however, at representing the response to changes in high-latitude heating or cooling. Therefore, MEP is evidently a plausible representation for heat transport in the midlatitudes, but not necessarily at low latitudes.
    publisherAmerican Meteorological Society
    titleThe Atmospheric Response to Surface Heating under Maximum Entropy Production
    typeJournal Paper
    journal volume71
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-13-0181.1
    journal fristpage2204
    journal lastpage2220
    treeJournal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian