YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis of Resolved and Parameterized Vertical Transports in Convective Boundary Layers at Gray-Zone Resolutions

    Source: Journal of the Atmospheric Sciences:;2013:;Volume( 070 ):;issue: 010::page 3248
    Author:
    Shin, Hyeyum Hailey
    ,
    Hong, Song-You
    DOI: 10.1175/JAS-D-12-0290.1
    Publisher: American Meteorological Society
    Abstract: he gray zone of a physical process in numerical models is defined as the range of model resolution in which the process is partly resolved by model dynamics and partly parameterized. In this study, the authors examine the grid-size dependencies of resolved and parameterized vertical transports in convective boundary layers (CBLs) for horizontal grid scales including the gray zone. To assess how stability alters the dependencies on grid size, four CBLs with different surface heating and geostrophic winds are considered. For this purpose, reference data for grid-scale (GS) and subgrid-scale (SGS) fields are constructed for 50?4000-m mesh sizes by filtering 25-m large-eddy simulation (LES) data.As relative importance of shear increases, the ratio of resolved turbulent kinetic energy increases for a given grid spacing. Vertical transports of potential temperature, momentum, and a bottom-up diffusion passive scalar behave in a similar fashion. The effects of stability are related to the horizontal scale of coherent large-eddy structures that change in the different stability. The subgrid-scale vertical transport of heat and the bottom-up scalar are divided into a nonlocal mixing owing to the coherent structures and remaining local mixing. The separate treatment of the nonlocal and local transports shows that the grid-size dependency of the SGS nonlocal flux and its sensitivity to stability predominantly determine the dependency of total (nonlocal plus local) SGS transport.
    • Download: (1.283Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis of Resolved and Parameterized Vertical Transports in Convective Boundary Layers at Gray-Zone Resolutions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219102
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorShin, Hyeyum Hailey
    contributor authorHong, Song-You
    date accessioned2017-06-09T16:55:55Z
    date available2017-06-09T16:55:55Z
    date copyright2013/10/01
    date issued2013
    identifier issn0022-4928
    identifier otherams-76633.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219102
    description abstracthe gray zone of a physical process in numerical models is defined as the range of model resolution in which the process is partly resolved by model dynamics and partly parameterized. In this study, the authors examine the grid-size dependencies of resolved and parameterized vertical transports in convective boundary layers (CBLs) for horizontal grid scales including the gray zone. To assess how stability alters the dependencies on grid size, four CBLs with different surface heating and geostrophic winds are considered. For this purpose, reference data for grid-scale (GS) and subgrid-scale (SGS) fields are constructed for 50?4000-m mesh sizes by filtering 25-m large-eddy simulation (LES) data.As relative importance of shear increases, the ratio of resolved turbulent kinetic energy increases for a given grid spacing. Vertical transports of potential temperature, momentum, and a bottom-up diffusion passive scalar behave in a similar fashion. The effects of stability are related to the horizontal scale of coherent large-eddy structures that change in the different stability. The subgrid-scale vertical transport of heat and the bottom-up scalar are divided into a nonlocal mixing owing to the coherent structures and remaining local mixing. The separate treatment of the nonlocal and local transports shows that the grid-size dependency of the SGS nonlocal flux and its sensitivity to stability predominantly determine the dependency of total (nonlocal plus local) SGS transport.
    publisherAmerican Meteorological Society
    titleAnalysis of Resolved and Parameterized Vertical Transports in Convective Boundary Layers at Gray-Zone Resolutions
    typeJournal Paper
    journal volume70
    journal issue10
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-12-0290.1
    journal fristpage3248
    journal lastpage3261
    treeJournal of the Atmospheric Sciences:;2013:;Volume( 070 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian