YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interpretation of Multiwavelength-Retrieved Droplet Effective Radii for Warm Water Clouds in Terms of In-Cloud Vertical Inhomogeneity by Using a Spectral Bin Microphysics Cloud Model

    Source: Journal of the Atmospheric Sciences:;2013:;Volume( 070 ):;issue: 008::page 2376
    Author:
    Nagao, Takashi M.
    ,
    Suzuki, Kentaroh
    ,
    Nakajima, Takashi Y.
    DOI: 10.1175/JAS-D-12-0225.1
    Publisher: American Meteorological Society
    Abstract: his study examines the impact of in-cloud vertical inhomogeneity on cloud droplet effective radii (CDERs) of water-phase cloud retrieved from 1.6-, 2.1-, and 3.7-?m-band measurements (denoted by r1.6, r2.1, and r3.7, respectively). Discrepancies between r1.6, r2.1, and r3.7 due to in-cloud vertical inhomogeneity are simulated by using a spectral bin microphysics cloud model and one-dimensional (1D) remote sensing simulator under assumptions that cloud properties at the subpixel scale have horizontal homogeneity and 3D radiative transfer effects can be ignored. Two-dimensional weighting functions for the retrieved CDERs with respect to cloud optical depth and droplet size are introduced and estimated by least squares fitting to the relation between the model-simulated droplet size distribution functions and the retrieved CDERs. The results show that the 2D weighting functions can explain CDER discrepancies due to in-cloud vertical inhomogeneity and size spectrum characteristics. The difference between r1.6 and r2.1 is found to primarily depend on the vertical difference in droplet size distribution because the peak widths of their weighting functions differ in terms of cloud optical depth. The difference between r3.7 and r2.1, in contrast, is highly dependent on r2.1 because the magnitude of its weighting function is always greater than that of r3.7 over the entire range of optical depths and droplet sizes, except for the cloud top. The overestimation of retrieved CDER compared with in situ CDER in a typical adiabatic cloud case is also interpreted in terms of in-cloud vertical inhomogeneity based on the 2D weighting functions and simulation results.
    • Download: (1.781Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interpretation of Multiwavelength-Retrieved Droplet Effective Radii for Warm Water Clouds in Terms of In-Cloud Vertical Inhomogeneity by Using a Spectral Bin Microphysics Cloud Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219050
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorNagao, Takashi M.
    contributor authorSuzuki, Kentaroh
    contributor authorNakajima, Takashi Y.
    date accessioned2017-06-09T16:55:37Z
    date available2017-06-09T16:55:37Z
    date copyright2013/08/01
    date issued2013
    identifier issn0022-4928
    identifier otherams-76587.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219050
    description abstracthis study examines the impact of in-cloud vertical inhomogeneity on cloud droplet effective radii (CDERs) of water-phase cloud retrieved from 1.6-, 2.1-, and 3.7-?m-band measurements (denoted by r1.6, r2.1, and r3.7, respectively). Discrepancies between r1.6, r2.1, and r3.7 due to in-cloud vertical inhomogeneity are simulated by using a spectral bin microphysics cloud model and one-dimensional (1D) remote sensing simulator under assumptions that cloud properties at the subpixel scale have horizontal homogeneity and 3D radiative transfer effects can be ignored. Two-dimensional weighting functions for the retrieved CDERs with respect to cloud optical depth and droplet size are introduced and estimated by least squares fitting to the relation between the model-simulated droplet size distribution functions and the retrieved CDERs. The results show that the 2D weighting functions can explain CDER discrepancies due to in-cloud vertical inhomogeneity and size spectrum characteristics. The difference between r1.6 and r2.1 is found to primarily depend on the vertical difference in droplet size distribution because the peak widths of their weighting functions differ in terms of cloud optical depth. The difference between r3.7 and r2.1, in contrast, is highly dependent on r2.1 because the magnitude of its weighting function is always greater than that of r3.7 over the entire range of optical depths and droplet sizes, except for the cloud top. The overestimation of retrieved CDER compared with in situ CDER in a typical adiabatic cloud case is also interpreted in terms of in-cloud vertical inhomogeneity based on the 2D weighting functions and simulation results.
    publisherAmerican Meteorological Society
    titleInterpretation of Multiwavelength-Retrieved Droplet Effective Radii for Warm Water Clouds in Terms of In-Cloud Vertical Inhomogeneity by Using a Spectral Bin Microphysics Cloud Model
    typeJournal Paper
    journal volume70
    journal issue8
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-12-0225.1
    journal fristpage2376
    journal lastpage2392
    treeJournal of the Atmospheric Sciences:;2013:;Volume( 070 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian