YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Time Scales of the Trade Wind Boundary Layer Adjustment

    Source: Journal of the Atmospheric Sciences:;2012:;Volume( 070 ):;issue: 004::page 1071
    Author:
    Bellon, Gilles
    ,
    Stevens, Bjorn
    DOI: 10.1175/JAS-D-12-0219.1
    Publisher: American Meteorological Society
    Abstract: he adjustment of the trade wind atmospheric boundary layer to an abrupt sea surface warming is investigated using a large-eddy simulation (LES) and two simple bulk models: a mixed-layer model (MLM), and a model based on the mixing-line hypothesis (XLM). The near-surface temperature adjusts in a few hours, faster than can be expected from the characteristic time scales associated with the physical processes at play. The near-surface humidity adjusts more slowly, with a time scale of about a day, and it exhibits an initial decrease before increasing to its equilibrium value. An analysis of the MLM suggests that the initial tendency of humidity and temperature results from the difference in Bowen ratios between the equilibrium and the perturbation. An analysis of the three linear modes of the XLM shows that the fastest-decaying mode adjusts the subcloud-layer buoyancy, with a constructive interaction of all of the physical processes. The second-fastest-decaying mode is an adjustment of the boundary layer thermodynamical structure and the slowest mode adjusts the boundary layer depth. Approximate analytical expressions of the time scales characterizing these linear modes are derived both for the MLM and the XLM. The MLM exhibits no scale separation between the fastest and second-fastest time scales and a scale separation between these and the slowest time scale only in the case of a shallow well-mixed boundary layer. The XLM exhibits a scale separation between the buoyancy adjustment of the subcloud layer and the overall thermodynamic adjustment, while conserving the scale separation with the slower adjustment of the boundary layer depth.
    • Download: (836.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Time Scales of the Trade Wind Boundary Layer Adjustment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219046
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBellon, Gilles
    contributor authorStevens, Bjorn
    date accessioned2017-06-09T16:55:35Z
    date available2017-06-09T16:55:35Z
    date copyright2013/04/01
    date issued2012
    identifier issn0022-4928
    identifier otherams-76583.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219046
    description abstracthe adjustment of the trade wind atmospheric boundary layer to an abrupt sea surface warming is investigated using a large-eddy simulation (LES) and two simple bulk models: a mixed-layer model (MLM), and a model based on the mixing-line hypothesis (XLM). The near-surface temperature adjusts in a few hours, faster than can be expected from the characteristic time scales associated with the physical processes at play. The near-surface humidity adjusts more slowly, with a time scale of about a day, and it exhibits an initial decrease before increasing to its equilibrium value. An analysis of the MLM suggests that the initial tendency of humidity and temperature results from the difference in Bowen ratios between the equilibrium and the perturbation. An analysis of the three linear modes of the XLM shows that the fastest-decaying mode adjusts the subcloud-layer buoyancy, with a constructive interaction of all of the physical processes. The second-fastest-decaying mode is an adjustment of the boundary layer thermodynamical structure and the slowest mode adjusts the boundary layer depth. Approximate analytical expressions of the time scales characterizing these linear modes are derived both for the MLM and the XLM. The MLM exhibits no scale separation between the fastest and second-fastest time scales and a scale separation between these and the slowest time scale only in the case of a shallow well-mixed boundary layer. The XLM exhibits a scale separation between the buoyancy adjustment of the subcloud layer and the overall thermodynamic adjustment, while conserving the scale separation with the slower adjustment of the boundary layer depth.
    publisherAmerican Meteorological Society
    titleTime Scales of the Trade Wind Boundary Layer Adjustment
    typeJournal Paper
    journal volume70
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-12-0219.1
    journal fristpage1071
    journal lastpage1083
    treeJournal of the Atmospheric Sciences:;2012:;Volume( 070 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian