YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On Thermally Forced Circulations over Heated Terrain

    Source: Journal of the Atmospheric Sciences:;2012:;Volume( 070 ):;issue: 006::page 1690
    Author:
    Kirshbaum, Daniel J.
    DOI: 10.1175/JAS-D-12-0199.1
    Publisher: American Meteorological Society
    Abstract: combination of analytical and numerical models is used to gain insight into the dynamics of thermally forced circulations over diurnally heated terrain. Solutions are obtained for two-layer flows (representing the boundary layer and the overlying free troposphere) over an isolated mountainlike heat source. A scaling based on the linearized Boussinesq system of equations is developed to quantify the strength of thermally forced updrafts and to identify three flow regimes, each with distinct dynamics and parameter sensitivities. This scaling closely matches corresponding numerical simulations in two of these regimes: the first characterized by a weakly stable boundary layer and significant background winds and the second by a strongly stable boundary layer. In the third regime, characterized by weak winds and weak boundary layer stability, this scaling is outperformed by a fundamentally different scaling based on thermodynamic heat engines. Within this regime, the inability of wind ventilation or static stability to diminish the buoyancy over the heat source leads to intense updrafts that are controlled by nonlinear dynamics. These nonlinearities create a positive feedback loop between the thermal forcing and vorticity that rapidly strengthens the circulation and contracts its central updraft into a narrow core. As the circulation intensifies under daytime heating, the warmest surface-based air is ventilated into the upper boundary layer, where it spreads laterally to occupy a broader area and, ultimately, restrain the circulation strength. The success demonstrated herein of simple theoretical models at predicting key aspects of thermally forced circulations offers hope for improved parameterization of related processes (e.g., convection initiation and aerosol venting) in large-scale models.
    • Download: (1.549Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On Thermally Forced Circulations over Heated Terrain

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219026
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKirshbaum, Daniel J.
    date accessioned2017-06-09T16:55:31Z
    date available2017-06-09T16:55:31Z
    date copyright2013/06/01
    date issued2012
    identifier issn0022-4928
    identifier otherams-76565.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219026
    description abstractcombination of analytical and numerical models is used to gain insight into the dynamics of thermally forced circulations over diurnally heated terrain. Solutions are obtained for two-layer flows (representing the boundary layer and the overlying free troposphere) over an isolated mountainlike heat source. A scaling based on the linearized Boussinesq system of equations is developed to quantify the strength of thermally forced updrafts and to identify three flow regimes, each with distinct dynamics and parameter sensitivities. This scaling closely matches corresponding numerical simulations in two of these regimes: the first characterized by a weakly stable boundary layer and significant background winds and the second by a strongly stable boundary layer. In the third regime, characterized by weak winds and weak boundary layer stability, this scaling is outperformed by a fundamentally different scaling based on thermodynamic heat engines. Within this regime, the inability of wind ventilation or static stability to diminish the buoyancy over the heat source leads to intense updrafts that are controlled by nonlinear dynamics. These nonlinearities create a positive feedback loop between the thermal forcing and vorticity that rapidly strengthens the circulation and contracts its central updraft into a narrow core. As the circulation intensifies under daytime heating, the warmest surface-based air is ventilated into the upper boundary layer, where it spreads laterally to occupy a broader area and, ultimately, restrain the circulation strength. The success demonstrated herein of simple theoretical models at predicting key aspects of thermally forced circulations offers hope for improved parameterization of related processes (e.g., convection initiation and aerosol venting) in large-scale models.
    publisherAmerican Meteorological Society
    titleOn Thermally Forced Circulations over Heated Terrain
    typeJournal Paper
    journal volume70
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-12-0199.1
    journal fristpage1690
    journal lastpage1709
    treeJournal of the Atmospheric Sciences:;2012:;Volume( 070 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian