YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Variability and Predictability of Axisymmetric Hurricanes in Statistical Equilibrium

    Source: Journal of the Atmospheric Sciences:;2012:;Volume( 070 ):;issue: 004::page 993
    Author:
    Hakim, Gregory J.
    DOI: 10.1175/JAS-D-12-0188.1
    Publisher: American Meteorological Society
    Abstract: he variability and predictability of axisymmetric hurricanes are determined from a 500-day numerical simulation of a tropical cyclone in statistical equilibrium. By design, the solution is independent of the initial conditions and environmental variability, which isolates the ?intrinsic? axisymmetric hurricane variability.Variability near the radius of maximum wind is dominated by two patterns: one associated primarily with radial shifts of the maximum wind, and one primarily with intensity change at the time-mean radius of maximum wind. These patterns are linked to convective bands that originate more than 100 km from the storm center and propagate inward. Bands approaching the storm produce eyewall replacement cycles, with an increase in storm intensity as the secondary eyewall contracts radially inward. A dominant time period of 4?8 days is found for the convective bands, which is hypothesized to be determined by the time scale over which subsidence from previous bands suppresses convection; a leading-order estimate based on the ratio of the Rossby radius to band speed fits the hypothesis.Predictability limits for the idealized axisymmetric solution are estimated from linear inverse modeling and analog forecasts, which yield consistent results showing a limit for the azimuthal wind of approximately 3 days. The optimal initial structure that excites the leading pattern of 24-h forecast-error variance has largest azimuthal wind in the midtroposphere outside the storm and a secondary maximum just outside the radius of maximum wind. Forecast errors grow by a factor of 24 near the radius of maximum wind.
    • Download: (2.050Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Variability and Predictability of Axisymmetric Hurricanes in Statistical Equilibrium

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219016
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHakim, Gregory J.
    date accessioned2017-06-09T16:55:30Z
    date available2017-06-09T16:55:30Z
    date copyright2013/04/01
    date issued2012
    identifier issn0022-4928
    identifier otherams-76556.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219016
    description abstracthe variability and predictability of axisymmetric hurricanes are determined from a 500-day numerical simulation of a tropical cyclone in statistical equilibrium. By design, the solution is independent of the initial conditions and environmental variability, which isolates the ?intrinsic? axisymmetric hurricane variability.Variability near the radius of maximum wind is dominated by two patterns: one associated primarily with radial shifts of the maximum wind, and one primarily with intensity change at the time-mean radius of maximum wind. These patterns are linked to convective bands that originate more than 100 km from the storm center and propagate inward. Bands approaching the storm produce eyewall replacement cycles, with an increase in storm intensity as the secondary eyewall contracts radially inward. A dominant time period of 4?8 days is found for the convective bands, which is hypothesized to be determined by the time scale over which subsidence from previous bands suppresses convection; a leading-order estimate based on the ratio of the Rossby radius to band speed fits the hypothesis.Predictability limits for the idealized axisymmetric solution are estimated from linear inverse modeling and analog forecasts, which yield consistent results showing a limit for the azimuthal wind of approximately 3 days. The optimal initial structure that excites the leading pattern of 24-h forecast-error variance has largest azimuthal wind in the midtroposphere outside the storm and a secondary maximum just outside the radius of maximum wind. Forecast errors grow by a factor of 24 near the radius of maximum wind.
    publisherAmerican Meteorological Society
    titleThe Variability and Predictability of Axisymmetric Hurricanes in Statistical Equilibrium
    typeJournal Paper
    journal volume70
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-12-0188.1
    journal fristpage993
    journal lastpage1005
    treeJournal of the Atmospheric Sciences:;2012:;Volume( 070 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian