YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Turbulence and Vertical Fluxes in the Stable Atmospheric Boundary Layer. Part II: A Novel Mixing-Length Model

    Source: Journal of the Atmospheric Sciences:;2013:;Volume( 070 ):;issue: 006::page 1528
    Author:
    Huang, Jing
    ,
    Bou-Zeid, Elie
    ,
    Golaz, Jean-Christophe
    DOI: 10.1175/JAS-D-12-0168.1
    Publisher: American Meteorological Society
    Abstract: his is the second part of a study about turbulence and vertical fluxes in the stable atmospheric boundary layer. Based on a suite of large-eddy simulations in Part I where the effects of stability on the turbulent structures and kinetic energy are investigated, first-order parameterization schemes are assessed and tested in the Geophysical Fluid Dynamics Laboratory (GFDL)?s single-column model. The applicability of the gradient-flux hypothesis is first examined and it is found that stable conditions are favorable for that hypothesis. However, the concept of introducing a stability correction function fm as a multiplicative factor into the mixing length used under neutral conditions lN is shown to be problematic because fm computed a priori from large-eddy simulations tends not to be a universal function of stability. With this observation, a novel mixing-length model is proposed, which conforms to large-eddy simulation results much better under stable conditions and converges to the classic model under neutral conditions. Test cases imposing steady as well as unsteady forcings are developed to evaluate the performance of the new model. It is found that the new model exhibits robust performance as the stability strength is changed, while other models are sensitive to changes in stability. For cases with unsteady forcings, which are very rarely simulated or tested, the results of the single-column model and large-eddy simulations are also closer when the new model is used, compared to the other models. However, unsteady cases are much more challenging for the turbulence closure formulations than cases with steady surface forcing.
    • Download: (1.230Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Turbulence and Vertical Fluxes in the Stable Atmospheric Boundary Layer. Part II: A Novel Mixing-Length Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219001
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHuang, Jing
    contributor authorBou-Zeid, Elie
    contributor authorGolaz, Jean-Christophe
    date accessioned2017-06-09T16:55:26Z
    date available2017-06-09T16:55:26Z
    date copyright2013/06/01
    date issued2013
    identifier issn0022-4928
    identifier otherams-76542.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219001
    description abstracthis is the second part of a study about turbulence and vertical fluxes in the stable atmospheric boundary layer. Based on a suite of large-eddy simulations in Part I where the effects of stability on the turbulent structures and kinetic energy are investigated, first-order parameterization schemes are assessed and tested in the Geophysical Fluid Dynamics Laboratory (GFDL)?s single-column model. The applicability of the gradient-flux hypothesis is first examined and it is found that stable conditions are favorable for that hypothesis. However, the concept of introducing a stability correction function fm as a multiplicative factor into the mixing length used under neutral conditions lN is shown to be problematic because fm computed a priori from large-eddy simulations tends not to be a universal function of stability. With this observation, a novel mixing-length model is proposed, which conforms to large-eddy simulation results much better under stable conditions and converges to the classic model under neutral conditions. Test cases imposing steady as well as unsteady forcings are developed to evaluate the performance of the new model. It is found that the new model exhibits robust performance as the stability strength is changed, while other models are sensitive to changes in stability. For cases with unsteady forcings, which are very rarely simulated or tested, the results of the single-column model and large-eddy simulations are also closer when the new model is used, compared to the other models. However, unsteady cases are much more challenging for the turbulence closure formulations than cases with steady surface forcing.
    publisherAmerican Meteorological Society
    titleTurbulence and Vertical Fluxes in the Stable Atmospheric Boundary Layer. Part II: A Novel Mixing-Length Model
    typeJournal Paper
    journal volume70
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-12-0168.1
    journal fristpage1528
    journal lastpage1542
    treeJournal of the Atmospheric Sciences:;2013:;Volume( 070 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian