YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Turbulence and Vertical Fluxes in the Stable Atmospheric Boundary Layer. Part I: A Large-Eddy Simulation Study

    Source: Journal of the Atmospheric Sciences:;2013:;Volume( 070 ):;issue: 006::page 1513
    Author:
    Huang, Jing
    ,
    Bou-Zeid, Elie
    DOI: 10.1175/JAS-D-12-0167.1
    Publisher: American Meteorological Society
    Abstract: his study seeks to quantitatively and qualitatively understand how stability affects transport in the continuously turbulent stably stratified atmospheric boundary layer, based on a suite of large-eddy simulations. The test cases are based on the one adopted by the Global Energy and Water Cycle Experiment (GEWEX) Atmospheric Boundary Layer Study (GABLS) project, but with a largely expanded stability range where the gradient Richardson number (Rig) reaches up to around 1. The analysis is mainly focused on understanding the modification of turbulent structures and dynamics with increasing stability in order to improve the modeling of the stable atmospheric boundary layer in weather and climate models, a topic addressed in Part II of this work. It is found that at quasi equilibrium, an increase in stability results in stronger vertical gradients of the mean temperature, a lowered low-level jet, a decrease in vertical momentum transport, an increase in vertical buoyancy flux, and a shallower boundary layer. Analysis of coherent turbulent structures using two-point autocorrelation reveals that the autocorrelation of the streamwise velocity is horizontally anisotropic while the autocorrelation of the vertical velocity is relatively isotropic in the horizontal plane and its integral length scale decreases as stability increases. The effects of stability on the overall turbulent kinetic energy (TKE) and its budget terms are also investigated, and it is shown that the authors' large-eddy simulation results are in good agreement with previous experimental findings across varied stabilities. Finally, Nieuwstadt's local-scaling theory is reexamined and it is concluded that the height z is not a relevant scaling parameter and should be replaced by a constant length scale away from the surface, indicating that the z-less range starts lower than previously assumed.
    • Download: (1.319Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Turbulence and Vertical Fluxes in the Stable Atmospheric Boundary Layer. Part I: A Large-Eddy Simulation Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218999
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHuang, Jing
    contributor authorBou-Zeid, Elie
    date accessioned2017-06-09T16:55:25Z
    date available2017-06-09T16:55:25Z
    date copyright2013/06/01
    date issued2013
    identifier issn0022-4928
    identifier otherams-76541.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218999
    description abstracthis study seeks to quantitatively and qualitatively understand how stability affects transport in the continuously turbulent stably stratified atmospheric boundary layer, based on a suite of large-eddy simulations. The test cases are based on the one adopted by the Global Energy and Water Cycle Experiment (GEWEX) Atmospheric Boundary Layer Study (GABLS) project, but with a largely expanded stability range where the gradient Richardson number (Rig) reaches up to around 1. The analysis is mainly focused on understanding the modification of turbulent structures and dynamics with increasing stability in order to improve the modeling of the stable atmospheric boundary layer in weather and climate models, a topic addressed in Part II of this work. It is found that at quasi equilibrium, an increase in stability results in stronger vertical gradients of the mean temperature, a lowered low-level jet, a decrease in vertical momentum transport, an increase in vertical buoyancy flux, and a shallower boundary layer. Analysis of coherent turbulent structures using two-point autocorrelation reveals that the autocorrelation of the streamwise velocity is horizontally anisotropic while the autocorrelation of the vertical velocity is relatively isotropic in the horizontal plane and its integral length scale decreases as stability increases. The effects of stability on the overall turbulent kinetic energy (TKE) and its budget terms are also investigated, and it is shown that the authors' large-eddy simulation results are in good agreement with previous experimental findings across varied stabilities. Finally, Nieuwstadt's local-scaling theory is reexamined and it is concluded that the height z is not a relevant scaling parameter and should be replaced by a constant length scale away from the surface, indicating that the z-less range starts lower than previously assumed.
    publisherAmerican Meteorological Society
    titleTurbulence and Vertical Fluxes in the Stable Atmospheric Boundary Layer. Part I: A Large-Eddy Simulation Study
    typeJournal Paper
    journal volume70
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-12-0167.1
    journal fristpage1513
    journal lastpage1527
    treeJournal of the Atmospheric Sciences:;2013:;Volume( 070 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian