YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Predictability of Supercell Thunderstorm Evolution

    Source: Journal of the Atmospheric Sciences:;2013:;Volume( 070 ):;issue: 007::page 1993
    Author:
    Cintineo, Rebecca M.
    ,
    Stensrud, David J.
    DOI: 10.1175/JAS-D-12-0166.1
    Publisher: American Meteorological Society
    Abstract: upercell thunderstorms produce a disproportionate amount of the severe weather in the United States, and accurate prediction of their movement and evolution is needed to warn the public of their hazards. This study explores the practical predictability of supercell thunderstorm forecasts in the presence of typical errors in the preconvective environmental conditions. The Advanced Research Weather Research and Forecasting model (ARW-WRF) is run at 1-km grid spacing and a control run of a supercell thunderstorm is produced using a horizontally homogeneous environment. Forecast errors from supercell environments derived from the 13-km Rapid Update Cycle (RUC) valid at 0000 UTC for forecast lead times up to 3 h are used to define the environmental errors, and 100 runs initialized with environmental perturbations characteristic of those errors are produced for each lead time. The simulations are analyzed to determine the spread and practical predictability of supercell thunderstorm forecasts from a storm-scale model, with the control used as truth.Most of the runs perturbed with the environmental forecast errors produce supercell thunderstorms; however, there is much less predictability for storm motion and structure. Results suggest that an upper bound to the practical predictability of storm location with the current environmental uncertainty for a 1-h environmental forecast is about 2 h, with the predictability of the storms decreasing to 1 h as lead time increases. Smaller-scale storm features, such as midlevel mesocyclones and regions of heavy rainfall, display much less predictability than storm location. Mesocyclone location is predictable out to 40 min or less, while heavy 5-min rainfall location is not predictable.
    • Download: (3.614Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Predictability of Supercell Thunderstorm Evolution

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218998
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorCintineo, Rebecca M.
    contributor authorStensrud, David J.
    date accessioned2017-06-09T16:55:25Z
    date available2017-06-09T16:55:25Z
    date copyright2013/07/01
    date issued2013
    identifier issn0022-4928
    identifier otherams-76540.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218998
    description abstractupercell thunderstorms produce a disproportionate amount of the severe weather in the United States, and accurate prediction of their movement and evolution is needed to warn the public of their hazards. This study explores the practical predictability of supercell thunderstorm forecasts in the presence of typical errors in the preconvective environmental conditions. The Advanced Research Weather Research and Forecasting model (ARW-WRF) is run at 1-km grid spacing and a control run of a supercell thunderstorm is produced using a horizontally homogeneous environment. Forecast errors from supercell environments derived from the 13-km Rapid Update Cycle (RUC) valid at 0000 UTC for forecast lead times up to 3 h are used to define the environmental errors, and 100 runs initialized with environmental perturbations characteristic of those errors are produced for each lead time. The simulations are analyzed to determine the spread and practical predictability of supercell thunderstorm forecasts from a storm-scale model, with the control used as truth.Most of the runs perturbed with the environmental forecast errors produce supercell thunderstorms; however, there is much less predictability for storm motion and structure. Results suggest that an upper bound to the practical predictability of storm location with the current environmental uncertainty for a 1-h environmental forecast is about 2 h, with the predictability of the storms decreasing to 1 h as lead time increases. Smaller-scale storm features, such as midlevel mesocyclones and regions of heavy rainfall, display much less predictability than storm location. Mesocyclone location is predictable out to 40 min or less, while heavy 5-min rainfall location is not predictable.
    publisherAmerican Meteorological Society
    titleOn the Predictability of Supercell Thunderstorm Evolution
    typeJournal Paper
    journal volume70
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-12-0166.1
    journal fristpage1993
    journal lastpage2011
    treeJournal of the Atmospheric Sciences:;2013:;Volume( 070 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian