YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Unified Model for Moist Convective Boundary Layers Based on a Stochastic Eddy-Diffusivity/Mass-Flux Parameterization

    Source: Journal of the Atmospheric Sciences:;2013:;Volume( 070 ):;issue: 007::page 1929
    Author:
    Sušelj, Kay
    ,
    Teixeira, João
    ,
    Chung, Daniel
    DOI: 10.1175/JAS-D-12-0106.1
    Publisher: American Meteorological Society
    Abstract: single-column model (SCM) is developed for representing moist convective boundary layers. The key component of the SCM is the parameterization of subgrid-scale vertical mixing, which is based on a stochastic eddy-diffusivity/mass-flux (EDMF) approach. In the EDMF framework, turbulent fluxes are calculated as a sum of the turbulent kinetic energy?based eddy-diffusivity component and a mass-flux component. The mass flux is modeled as a fixed number of steady-state plumes. The main challenge of the mass-flux model is to properly represent cumulus clouds, which are modeled as moist plumes. The solutions have to account for a realistic representation of condensation within the plumes and of lateral entrainment into the plumes. At the level of mean condensation within the updraft, the joint pdf of moist conserved variables and vertical velocity is used to estimate the proportion of dry and moist plumes and is sampled in a Monte Carlo way creating a predefined number of plumes. The lateral entrainment rate is modeled as a stochastic process resulting in a realistic decrease of the convective cloudiness with height above cloud base. In addition to the EDMF scheme, the following processes are included in the SCM: a pdf-based parameterization of subgrid-scale condensation, a simple longwave radiation, and one-dimensional dynamics. Note that in this approach there are two distinct pdfs, one representing the variability of updraft properties and the other one the variability of thermodynamic properties of the surrounding environment. The authors show that the model is able to capture the essential features of moist boundary layers, ranging from stratocumulus to shallow-cumulus regimes. Detailed comparisons, which include pdfs, profiles, and integrated budgets with the Barbados Oceanographic and Meteorological Experiment (BOMEX), Dynamics and Chemistry of Marine Stratocumulus (DYCOMS), and steady-state large-eddy simulation (LES) cases, are discussed to confirm the quality of the present approach.
    • Download: (1.669Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Unified Model for Moist Convective Boundary Layers Based on a Stochastic Eddy-Diffusivity/Mass-Flux Parameterization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218947
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSušelj, Kay
    contributor authorTeixeira, João
    contributor authorChung, Daniel
    date accessioned2017-06-09T16:55:11Z
    date available2017-06-09T16:55:11Z
    date copyright2013/07/01
    date issued2013
    identifier issn0022-4928
    identifier otherams-76494.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218947
    description abstractsingle-column model (SCM) is developed for representing moist convective boundary layers. The key component of the SCM is the parameterization of subgrid-scale vertical mixing, which is based on a stochastic eddy-diffusivity/mass-flux (EDMF) approach. In the EDMF framework, turbulent fluxes are calculated as a sum of the turbulent kinetic energy?based eddy-diffusivity component and a mass-flux component. The mass flux is modeled as a fixed number of steady-state plumes. The main challenge of the mass-flux model is to properly represent cumulus clouds, which are modeled as moist plumes. The solutions have to account for a realistic representation of condensation within the plumes and of lateral entrainment into the plumes. At the level of mean condensation within the updraft, the joint pdf of moist conserved variables and vertical velocity is used to estimate the proportion of dry and moist plumes and is sampled in a Monte Carlo way creating a predefined number of plumes. The lateral entrainment rate is modeled as a stochastic process resulting in a realistic decrease of the convective cloudiness with height above cloud base. In addition to the EDMF scheme, the following processes are included in the SCM: a pdf-based parameterization of subgrid-scale condensation, a simple longwave radiation, and one-dimensional dynamics. Note that in this approach there are two distinct pdfs, one representing the variability of updraft properties and the other one the variability of thermodynamic properties of the surrounding environment. The authors show that the model is able to capture the essential features of moist boundary layers, ranging from stratocumulus to shallow-cumulus regimes. Detailed comparisons, which include pdfs, profiles, and integrated budgets with the Barbados Oceanographic and Meteorological Experiment (BOMEX), Dynamics and Chemistry of Marine Stratocumulus (DYCOMS), and steady-state large-eddy simulation (LES) cases, are discussed to confirm the quality of the present approach.
    publisherAmerican Meteorological Society
    titleA Unified Model for Moist Convective Boundary Layers Based on a Stochastic Eddy-Diffusivity/Mass-Flux Parameterization
    typeJournal Paper
    journal volume70
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-12-0106.1
    journal fristpage1929
    journal lastpage1953
    treeJournal of the Atmospheric Sciences:;2013:;Volume( 070 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian