YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Numerical Study of Urban Aerosol Impacts on Clouds and Precipitation

    Source: Journal of the Atmospheric Sciences:;2011:;Volume( 069 ):;issue: 002::page 504
    Author:
    Han, Ji-Young
    ,
    Baik, Jong-Jin
    ,
    Khain, Alexander P.
    DOI: 10.1175/JAS-D-11-071.1
    Publisher: American Meteorological Society
    Abstract: he impacts of urban aerosols on clouds and precipitation are investigated using a spectral (bin) microphysics cloud model. For this purpose, extensive numerical experiments with various aerosol concentrations are performed under different environmental moisture conditions. To take into account the urban heat island and urban air pollution, it is considered that there is low-level heating in the urban area and that the aerosol concentration in the urban area is higher than that in the surrounding rural area. Simulation results show that a low-level updraft induced by the urban heat island leads to the formation of a low-level cloud and then a deep convective cloud downwind of the urban area. The onset of precipitation produced by the low-level cloud is delayed at higher aerosol concentrations. This is because when the aerosol concentration is high, a narrow drop size distribution results in a suppressed collision?coalescence process and hence in late raindrop formation. However, after the deep convective cloud develops, a higher aerosol concentration generally leads to the development of a stronger convective cloud. This is mainly due to increased release of latent heat resulting from the enhanced condensation process with increasing aerosol concentration. The low collision efficiency of smaller cloud drops and the resulting stronger updraft at higher aerosol concentrations result in higher liquid water content at higher levels, leading to the enhanced riming process to produce large ice particles. The melting of a larger amount of hail leads to precipitation enhancement downwind of the urban area with increasing urban aerosol concentration in all moisture environments considered.
    • Download: (3.307Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Numerical Study of Urban Aerosol Impacts on Clouds and Precipitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218917
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHan, Ji-Young
    contributor authorBaik, Jong-Jin
    contributor authorKhain, Alexander P.
    date accessioned2017-06-09T16:55:04Z
    date available2017-06-09T16:55:04Z
    date copyright2012/02/01
    date issued2011
    identifier issn0022-4928
    identifier otherams-76467.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218917
    description abstracthe impacts of urban aerosols on clouds and precipitation are investigated using a spectral (bin) microphysics cloud model. For this purpose, extensive numerical experiments with various aerosol concentrations are performed under different environmental moisture conditions. To take into account the urban heat island and urban air pollution, it is considered that there is low-level heating in the urban area and that the aerosol concentration in the urban area is higher than that in the surrounding rural area. Simulation results show that a low-level updraft induced by the urban heat island leads to the formation of a low-level cloud and then a deep convective cloud downwind of the urban area. The onset of precipitation produced by the low-level cloud is delayed at higher aerosol concentrations. This is because when the aerosol concentration is high, a narrow drop size distribution results in a suppressed collision?coalescence process and hence in late raindrop formation. However, after the deep convective cloud develops, a higher aerosol concentration generally leads to the development of a stronger convective cloud. This is mainly due to increased release of latent heat resulting from the enhanced condensation process with increasing aerosol concentration. The low collision efficiency of smaller cloud drops and the resulting stronger updraft at higher aerosol concentrations result in higher liquid water content at higher levels, leading to the enhanced riming process to produce large ice particles. The melting of a larger amount of hail leads to precipitation enhancement downwind of the urban area with increasing urban aerosol concentration in all moisture environments considered.
    publisherAmerican Meteorological Society
    titleA Numerical Study of Urban Aerosol Impacts on Clouds and Precipitation
    typeJournal Paper
    journal volume69
    journal issue2
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-11-071.1
    journal fristpage504
    journal lastpage520
    treeJournal of the Atmospheric Sciences:;2011:;Volume( 069 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian