YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Anatomy of Synoptic Eddy–NAO Interaction through Eddy Structure Decomposition

    Source: Journal of the Atmospheric Sciences:;2012:;Volume( 069 ):;issue: 007::page 2171
    Author:
    Ren, Hong-Li
    ,
    Jin, Fei-Fei
    ,
    Gao, Li
    DOI: 10.1175/JAS-D-11-069.1
    Publisher: American Meteorological Society
    Abstract: method of eddy structure decomposition is proposed to detect how low-frequency flow associated with the North Atlantic Oscillation (NAO) organizes systematically synoptic eddy (SE) activity to generate in-phase and upstream feedbacks. In this method, a statistical eddy streamfunction (SES) field, defined by the three-point covariance of synoptic-scale streamfunction, is introduced to characterize spatiotemporal SE flow structures. The SES field is decomposed into basic and anomalous parts to represent the climatological SE flow structure and its departure. These two parts are used to calculate the basic and anomalous eddy velocity, eddy vorticity, and thus eddy vorticity flux fields, in order to elucidate those two SE feedbacks onto the NAO. This method is validated by the fact that the observed anomalous eddy vorticity flux field can be reproduced well by two linear terms: the basic eddy velocity field multiplied by anomalous eddy vorticity field and the anomalous eddy velocity field multiplied by basic eddy vorticity field. With this method, it is found that, in the positive and negative phases, the NAO flow tends to induce two different types of anomalous SE flow structure, which are largely responsible for generating the net meridional and zonal eddy vorticity fluxes that, in return, feed back onto the NAO. The two processes that are related to these two different types dominate in the in-phase and upstream feedbacks, which are delineated conceptually into two kinematic mechanisms associated with zonal-slanting and meridional-shifting changes in the SE structure. The present observational evidence supports the theory of eddy-induced instability for low-frequency variability and also provides insights into the reason for the asymmetry between the SE feedbacks onto the two NAO phases.
    • Download: (8.687Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Anatomy of Synoptic Eddy–NAO Interaction through Eddy Structure Decomposition

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218914
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorRen, Hong-Li
    contributor authorJin, Fei-Fei
    contributor authorGao, Li
    date accessioned2017-06-09T16:55:03Z
    date available2017-06-09T16:55:03Z
    date copyright2012/07/01
    date issued2012
    identifier issn0022-4928
    identifier otherams-76464.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218914
    description abstractmethod of eddy structure decomposition is proposed to detect how low-frequency flow associated with the North Atlantic Oscillation (NAO) organizes systematically synoptic eddy (SE) activity to generate in-phase and upstream feedbacks. In this method, a statistical eddy streamfunction (SES) field, defined by the three-point covariance of synoptic-scale streamfunction, is introduced to characterize spatiotemporal SE flow structures. The SES field is decomposed into basic and anomalous parts to represent the climatological SE flow structure and its departure. These two parts are used to calculate the basic and anomalous eddy velocity, eddy vorticity, and thus eddy vorticity flux fields, in order to elucidate those two SE feedbacks onto the NAO. This method is validated by the fact that the observed anomalous eddy vorticity flux field can be reproduced well by two linear terms: the basic eddy velocity field multiplied by anomalous eddy vorticity field and the anomalous eddy velocity field multiplied by basic eddy vorticity field. With this method, it is found that, in the positive and negative phases, the NAO flow tends to induce two different types of anomalous SE flow structure, which are largely responsible for generating the net meridional and zonal eddy vorticity fluxes that, in return, feed back onto the NAO. The two processes that are related to these two different types dominate in the in-phase and upstream feedbacks, which are delineated conceptually into two kinematic mechanisms associated with zonal-slanting and meridional-shifting changes in the SE structure. The present observational evidence supports the theory of eddy-induced instability for low-frequency variability and also provides insights into the reason for the asymmetry between the SE feedbacks onto the two NAO phases.
    publisherAmerican Meteorological Society
    titleAnatomy of Synoptic Eddy–NAO Interaction through Eddy Structure Decomposition
    typeJournal Paper
    journal volume69
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-11-069.1
    journal fristpage2171
    journal lastpage2191
    treeJournal of the Atmospheric Sciences:;2012:;Volume( 069 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian