YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanisms of the Tropical Upwelling Branch of the Brewer–Dobson Circulation: The Role of Extratropical Waves

    Source: Journal of the Atmospheric Sciences:;2011:;Volume( 068 ):;issue: 012::page 2878
    Author:
    Chen, Gang
    ,
    Sun, Lantao
    DOI: 10.1175/JAS-D-11-044.1
    Publisher: American Meteorological Society
    Abstract: he role of extratropical waves in the tropical upwelling branch of the Brewer?Dobson circulation is investigated in an idealized model of the stratosphere and troposphere. To simulate different stratospheric seasonal cycles of planetary waves in the two hemispheres, seasonally varying radiative heating is imposed only in the stratosphere, and surface topographic forcing is prescribed only in the Northern Hemisphere (NH). A zonally symmetric version of the same model is used to diagnose the effects of different wavenumbers and different regions of the total forcing on tropical stratospheric upwelling.The simple configuration can simulate a reasonable seasonal cycle of the tropical upwelling in the lower stratosphere with a stronger amplitude in January (NH midwinter) than in July (NH midsummer), as in the observations. It is shown that the seasonal cycle of stratospheric planetary waves and tropical upwelling responds nonlinearly to the strength of the tropospheric forcing, with a midwinter maximum under strong NH-like tropospheric forcing and double peaks in the fall and spring under weak Southern Hemisphere (SH)-like forcing. The planetary wave component of the total forcing can approximately reproduce the seasonal cycle of tropical stratospheric upwelling in the zonally symmetric model.The zonally symmetric model further demonstrates that the planetary wave forcing in the winter tropical and subtropical stratosphere contributes most to the seasonal cycle of tropical stratospheric upwelling, rather than the high-latitude wave forcing. This suggests that the planetary wave forcing, prescribed mostly in the extratropics in the model, has to propagate equatorward into the subtropical latitudes to induce sufficient tropical upwelling. Another interesting finding is that the planetary waves in the summer lower stratosphere can drive a shallow residual circulation rising in the subtropics and subsiding in the extratropics.
    • Download: (1.818Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanisms of the Tropical Upwelling Branch of the Brewer–Dobson Circulation: The Role of Extratropical Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218893
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorChen, Gang
    contributor authorSun, Lantao
    date accessioned2017-06-09T16:54:59Z
    date available2017-06-09T16:54:59Z
    date copyright2011/12/01
    date issued2011
    identifier issn0022-4928
    identifier otherams-76445.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218893
    description abstracthe role of extratropical waves in the tropical upwelling branch of the Brewer?Dobson circulation is investigated in an idealized model of the stratosphere and troposphere. To simulate different stratospheric seasonal cycles of planetary waves in the two hemispheres, seasonally varying radiative heating is imposed only in the stratosphere, and surface topographic forcing is prescribed only in the Northern Hemisphere (NH). A zonally symmetric version of the same model is used to diagnose the effects of different wavenumbers and different regions of the total forcing on tropical stratospheric upwelling.The simple configuration can simulate a reasonable seasonal cycle of the tropical upwelling in the lower stratosphere with a stronger amplitude in January (NH midwinter) than in July (NH midsummer), as in the observations. It is shown that the seasonal cycle of stratospheric planetary waves and tropical upwelling responds nonlinearly to the strength of the tropospheric forcing, with a midwinter maximum under strong NH-like tropospheric forcing and double peaks in the fall and spring under weak Southern Hemisphere (SH)-like forcing. The planetary wave component of the total forcing can approximately reproduce the seasonal cycle of tropical stratospheric upwelling in the zonally symmetric model.The zonally symmetric model further demonstrates that the planetary wave forcing in the winter tropical and subtropical stratosphere contributes most to the seasonal cycle of tropical stratospheric upwelling, rather than the high-latitude wave forcing. This suggests that the planetary wave forcing, prescribed mostly in the extratropics in the model, has to propagate equatorward into the subtropical latitudes to induce sufficient tropical upwelling. Another interesting finding is that the planetary waves in the summer lower stratosphere can drive a shallow residual circulation rising in the subtropics and subsiding in the extratropics.
    publisherAmerican Meteorological Society
    titleMechanisms of the Tropical Upwelling Branch of the Brewer–Dobson Circulation: The Role of Extratropical Waves
    typeJournal Paper
    journal volume68
    journal issue12
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-11-044.1
    journal fristpage2878
    journal lastpage2892
    treeJournal of the Atmospheric Sciences:;2011:;Volume( 068 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian