YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mesoscale Structural Evolution of Three Tropical Weather Systems Observed during PREDICT

    Source: Journal of the Atmospheric Sciences:;2011:;Volume( 069 ):;issue: 004::page 1284
    Author:
    Davis, Christopher A.
    ,
    Ahijevych, David A.
    DOI: 10.1175/JAS-D-11-0225.1
    Publisher: American Meteorological Society
    Abstract: hree well-observed Atlantic tropical weather systems that occurred during the 2010 hurricane season are analyzed. One case was former Tropical Storm Gaston that failed to redevelop into a tropical cyclone; the other two cases were developing storms Karl and Matthew. Geostationary satellite, multisensor-derived precipitation, and dropsondes from the National Science Foundation (NSF)?NCAR Gulfstream V (GV), NASA DC-8, and the NOAA Gulfstream IV (G-IV) and WP-3D Orion (P-3) aircraft are analyzed in a system-following frame to quantify the mesoscale dynamics of these systems.Gaston featured extensive dry air surrounding an initially moist core. Vertical shear forced a misalignment of midtropospheric and lower-tropospheric circulation centers. This misalignment allowed dry air to intrude above the lower-tropospheric center and severely limited the area influenced by deep moist convection, thus providing little chance of maintaining or rebuilding the vortex in sheared flow. By contrast, Karl and Matthew developed in a moister environment overall, with moisture increasing with time in the middle and upper troposphere. Deep moist convection was quasi-diurnal prior to genesis. For Karl, deep convection was initially organized away from the lower-tropospheric circulation center, creating a misalignment of the vortex. The vortex gradually realigned over several days and genesis followed this realignment within roughly one day. Matthew experienced weaker shear, was vertically aligned through most of its early evolution, and developed more rapidly than Karl. The evolutions of the three cases are interpreted in the context of recent theories of tropical cyclone formation.
    • Download: (4.270Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mesoscale Structural Evolution of Three Tropical Weather Systems Observed during PREDICT

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218782
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorDavis, Christopher A.
    contributor authorAhijevych, David A.
    date accessioned2017-06-09T16:54:29Z
    date available2017-06-09T16:54:29Z
    date copyright2012/04/01
    date issued2011
    identifier issn0022-4928
    identifier otherams-76345.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218782
    description abstracthree well-observed Atlantic tropical weather systems that occurred during the 2010 hurricane season are analyzed. One case was former Tropical Storm Gaston that failed to redevelop into a tropical cyclone; the other two cases were developing storms Karl and Matthew. Geostationary satellite, multisensor-derived precipitation, and dropsondes from the National Science Foundation (NSF)?NCAR Gulfstream V (GV), NASA DC-8, and the NOAA Gulfstream IV (G-IV) and WP-3D Orion (P-3) aircraft are analyzed in a system-following frame to quantify the mesoscale dynamics of these systems.Gaston featured extensive dry air surrounding an initially moist core. Vertical shear forced a misalignment of midtropospheric and lower-tropospheric circulation centers. This misalignment allowed dry air to intrude above the lower-tropospheric center and severely limited the area influenced by deep moist convection, thus providing little chance of maintaining or rebuilding the vortex in sheared flow. By contrast, Karl and Matthew developed in a moister environment overall, with moisture increasing with time in the middle and upper troposphere. Deep moist convection was quasi-diurnal prior to genesis. For Karl, deep convection was initially organized away from the lower-tropospheric circulation center, creating a misalignment of the vortex. The vortex gradually realigned over several days and genesis followed this realignment within roughly one day. Matthew experienced weaker shear, was vertically aligned through most of its early evolution, and developed more rapidly than Karl. The evolutions of the three cases are interpreted in the context of recent theories of tropical cyclone formation.
    publisherAmerican Meteorological Society
    titleMesoscale Structural Evolution of Three Tropical Weather Systems Observed during PREDICT
    typeJournal Paper
    journal volume69
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-11-0225.1
    journal fristpage1284
    journal lastpage1305
    treeJournal of the Atmospheric Sciences:;2011:;Volume( 069 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian