YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Linkages between the Tropospheric Isentropic Slope and Eddy Fluxes of Heat during Northern Hemisphere Winter

    Source: Journal of the Atmospheric Sciences:;2012:;Volume( 069 ):;issue: 006::page 1811
    Author:
    Thompson, David W. J.
    ,
    Birner, Thomas
    DOI: 10.1175/JAS-D-11-0187.1
    Publisher: American Meteorological Society
    Abstract: revious studies have demonstrated the key role of baroclinicity and thus the isentropic slope in determining the climatological-mean distribution of the tropospheric eddy fluxes of heat. Here the authors examine the role of variability in the isentropic slope in driving variations in the tropospheric eddy fluxes of heat about their long-term mean during Northern Hemisphere winter.On month-to-month time scales, the lower-tropospheric isentropic slope and eddy fluxes of heat are not significantly correlated when all eddies are included in the analysis. But the isentropic slope and heat fluxes are closely linked when the data are filtered to isolate the fluxes due to synoptic (<10 days) and low-frequency (>10 days) time scale waves. Anomalously steep isentropic slopes are characterized by anomalously poleward heat fluxes by synoptic eddies but anomalously equatorward heat fluxes by low-frequency eddies. Lag regressions based on daily data reveal that 1) variations in the isentropic slope precede by several days variations in the heat fluxes by synoptic eddies and 2) variations in the heat fluxes due to both synoptic and low-frequency eddies precede by several days similarly signed variations in the momentum flux at the tropopause level.The results suggest that seemingly modest changes in the tropospheric isentropic slope drive significant changes in the synoptic eddy heat fluxes and thus in the generation of baroclinic wave activity in the lower troposphere. The linkages have implications for understanding the extratropical tropospheric eddy response to a range of processes, including anthropogenic climate change, stratospheric variability, and extratropical sea surface temperature anomalies.
    • Download: (1.778Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Linkages between the Tropospheric Isentropic Slope and Eddy Fluxes of Heat during Northern Hemisphere Winter

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218749
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorThompson, David W. J.
    contributor authorBirner, Thomas
    date accessioned2017-06-09T16:54:24Z
    date available2017-06-09T16:54:24Z
    date copyright2012/06/01
    date issued2012
    identifier issn0022-4928
    identifier otherams-76315.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218749
    description abstractrevious studies have demonstrated the key role of baroclinicity and thus the isentropic slope in determining the climatological-mean distribution of the tropospheric eddy fluxes of heat. Here the authors examine the role of variability in the isentropic slope in driving variations in the tropospheric eddy fluxes of heat about their long-term mean during Northern Hemisphere winter.On month-to-month time scales, the lower-tropospheric isentropic slope and eddy fluxes of heat are not significantly correlated when all eddies are included in the analysis. But the isentropic slope and heat fluxes are closely linked when the data are filtered to isolate the fluxes due to synoptic (<10 days) and low-frequency (>10 days) time scale waves. Anomalously steep isentropic slopes are characterized by anomalously poleward heat fluxes by synoptic eddies but anomalously equatorward heat fluxes by low-frequency eddies. Lag regressions based on daily data reveal that 1) variations in the isentropic slope precede by several days variations in the heat fluxes by synoptic eddies and 2) variations in the heat fluxes due to both synoptic and low-frequency eddies precede by several days similarly signed variations in the momentum flux at the tropopause level.The results suggest that seemingly modest changes in the tropospheric isentropic slope drive significant changes in the synoptic eddy heat fluxes and thus in the generation of baroclinic wave activity in the lower troposphere. The linkages have implications for understanding the extratropical tropospheric eddy response to a range of processes, including anthropogenic climate change, stratospheric variability, and extratropical sea surface temperature anomalies.
    publisherAmerican Meteorological Society
    titleOn the Linkages between the Tropospheric Isentropic Slope and Eddy Fluxes of Heat during Northern Hemisphere Winter
    typeJournal Paper
    journal volume69
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-11-0187.1
    journal fristpage1811
    journal lastpage1823
    treeJournal of the Atmospheric Sciences:;2012:;Volume( 069 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian