YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Using the Sensitivity of Large-Eddy Simulations to Evaluate Atmospheric Boundary Layer Models

    Source: Journal of the Atmospheric Sciences:;2012:;Volume( 069 ):;issue: 005::page 1582
    Author:
    Bellon, Gilles
    ,
    Stevens, Bjorn
    DOI: 10.1175/JAS-D-11-0160.1
    Publisher: American Meteorological Society
    Abstract: simple framework to study the sensitivity of atmospheric boundary layer (ABL) models to the large-scale conditions and forcings is introduced. This framework minimizes the number of parameters necessary to describe the large-scale conditions, subsidence, and radiation. Using this framework, the sensitivity of the stationary ABL to the large-scale boundary conditions [underlying sea surface temperature (SST) and overlying humidity and temperature in the free troposphere] is investigated in large-eddy simulations (LESs). For increasing SST or decreasing free-tropospheric temperature, the LES exhibits a transition from a cloud-free, well-mixed ABL stationary state, through a cloudy, well-mixed stationary state and a stable shallow cumulus stationary state, to an unstable regime with a deepening shallow cumulus layer. For a warm SST, when increasing free-tropospheric humidity, the LES exhibits a transition from a stable shallow cumulus stationary state, through a stable cumulus-under-stratus stationary state, to an unstable regime with a deepening, cumulus-under-stratus layer. For a cool SST, when increasing the free-tropospheric humidity, the LES stationary state exhibits a transition from a cloud-free, well-mixed ABL regime, through a well-mixed cumulus-capped regime, to a stratus-capped regime with a decoupling between the subcloud and cloud layers.This dataset can be used to evaluate other ABL models. As an example, the sensitivity of a bulk model based on the mixing-line model is presented. This bulk model reproduces the LES sensitivity to SST and free-tropospheric temperature for the stable and unstable shallow cumulus regimes, but it is less successful at reproducing the LES sensitivity to free-tropospheric humidity for both shallow cumulus and well-mixed regimes.
    • Download: (1.490Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Using the Sensitivity of Large-Eddy Simulations to Evaluate Atmospheric Boundary Layer Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218731
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBellon, Gilles
    contributor authorStevens, Bjorn
    date accessioned2017-06-09T16:54:20Z
    date available2017-06-09T16:54:20Z
    date copyright2012/05/01
    date issued2012
    identifier issn0022-4928
    identifier otherams-76300.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218731
    description abstractsimple framework to study the sensitivity of atmospheric boundary layer (ABL) models to the large-scale conditions and forcings is introduced. This framework minimizes the number of parameters necessary to describe the large-scale conditions, subsidence, and radiation. Using this framework, the sensitivity of the stationary ABL to the large-scale boundary conditions [underlying sea surface temperature (SST) and overlying humidity and temperature in the free troposphere] is investigated in large-eddy simulations (LESs). For increasing SST or decreasing free-tropospheric temperature, the LES exhibits a transition from a cloud-free, well-mixed ABL stationary state, through a cloudy, well-mixed stationary state and a stable shallow cumulus stationary state, to an unstable regime with a deepening shallow cumulus layer. For a warm SST, when increasing free-tropospheric humidity, the LES exhibits a transition from a stable shallow cumulus stationary state, through a stable cumulus-under-stratus stationary state, to an unstable regime with a deepening, cumulus-under-stratus layer. For a cool SST, when increasing the free-tropospheric humidity, the LES stationary state exhibits a transition from a cloud-free, well-mixed ABL regime, through a well-mixed cumulus-capped regime, to a stratus-capped regime with a decoupling between the subcloud and cloud layers.This dataset can be used to evaluate other ABL models. As an example, the sensitivity of a bulk model based on the mixing-line model is presented. This bulk model reproduces the LES sensitivity to SST and free-tropospheric temperature for the stable and unstable shallow cumulus regimes, but it is less successful at reproducing the LES sensitivity to free-tropospheric humidity for both shallow cumulus and well-mixed regimes.
    publisherAmerican Meteorological Society
    titleUsing the Sensitivity of Large-Eddy Simulations to Evaluate Atmospheric Boundary Layer Models
    typeJournal Paper
    journal volume69
    journal issue5
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-11-0160.1
    journal fristpage1582
    journal lastpage1601
    treeJournal of the Atmospheric Sciences:;2012:;Volume( 069 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian