YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data Assimilation in Slow–Fast Systems Using Homogenized Climate Models

    Source: Journal of the Atmospheric Sciences:;2011:;Volume( 069 ):;issue: 004::page 1359
    Author:
    Mitchell, Lewis
    ,
    Gottwald, Georg A.
    DOI: 10.1175/JAS-D-11-0145.1
    Publisher: American Meteorological Society
    Abstract: deterministic multiscale toy model is studied in which a chaotic fast subsystem triggers rare transitions between slow regimes, akin to weather or climate regimes. Using homogenization techniques, a reduced stochastic parameterization model is derived for the slow dynamics. The reliability of this reduced climate model in reproducing the statistics of the slow dynamics of the full deterministic model for finite values of the time-scale separation is numerically established. The statistics, however, are sensitive to uncertainties in the parameters of the stochastic model.It is investigated whether the stochastic climate model can be beneficial as a forecast model in an ensemble data assimilation setting, in particular in the realistic setting when observations are only available for the slow variables. The main result is that reduced stochastic models can indeed improve the analysis skill when used as forecast models instead of the perfect full deterministic model. The stochastic climate model is far superior at detecting transitions between regimes. The observation intervals for which skill improvement can be obtained are related to the characteristic time scales involved. The reason why stochastic climate models are capable of producing superior skill in an ensemble setting is the finite ensemble size; ensembles obtained from the perfect deterministic forecast model lack sufficient spread even for moderate ensemble sizes. Stochastic climate models provide a natural way to provide sufficient ensemble spread to detect transitions between regimes. This is corroborated with numerical simulations. The conclusion is that stochastic parameterizations are attractive for data assimilation despite their sensitivity to uncertainties in the parameters.
    • Download: (1.294Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data Assimilation in Slow–Fast Systems Using Homogenized Climate Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218720
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMitchell, Lewis
    contributor authorGottwald, Georg A.
    date accessioned2017-06-09T16:54:18Z
    date available2017-06-09T16:54:18Z
    date copyright2012/04/01
    date issued2011
    identifier issn0022-4928
    identifier otherams-76290.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218720
    description abstractdeterministic multiscale toy model is studied in which a chaotic fast subsystem triggers rare transitions between slow regimes, akin to weather or climate regimes. Using homogenization techniques, a reduced stochastic parameterization model is derived for the slow dynamics. The reliability of this reduced climate model in reproducing the statistics of the slow dynamics of the full deterministic model for finite values of the time-scale separation is numerically established. The statistics, however, are sensitive to uncertainties in the parameters of the stochastic model.It is investigated whether the stochastic climate model can be beneficial as a forecast model in an ensemble data assimilation setting, in particular in the realistic setting when observations are only available for the slow variables. The main result is that reduced stochastic models can indeed improve the analysis skill when used as forecast models instead of the perfect full deterministic model. The stochastic climate model is far superior at detecting transitions between regimes. The observation intervals for which skill improvement can be obtained are related to the characteristic time scales involved. The reason why stochastic climate models are capable of producing superior skill in an ensemble setting is the finite ensemble size; ensembles obtained from the perfect deterministic forecast model lack sufficient spread even for moderate ensemble sizes. Stochastic climate models provide a natural way to provide sufficient ensemble spread to detect transitions between regimes. This is corroborated with numerical simulations. The conclusion is that stochastic parameterizations are attractive for data assimilation despite their sensitivity to uncertainties in the parameters.
    publisherAmerican Meteorological Society
    titleData Assimilation in Slow–Fast Systems Using Homogenized Climate Models
    typeJournal Paper
    journal volume69
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-11-0145.1
    journal fristpage1359
    journal lastpage1377
    treeJournal of the Atmospheric Sciences:;2011:;Volume( 069 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian