YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Model for the Interaction between 2-Day Waves and Moist Kelvin Waves

    Source: Journal of the Atmospheric Sciences:;2011:;Volume( 069 ):;issue: 002::page 611
    Author:
    Liu, Fei
    ,
    Wang, Bin
    DOI: 10.1175/JAS-D-11-0116.1
    Publisher: American Meteorological Society
    Abstract: he eastward-propagating tropical low-frequency disturbances, such as the moist Kelvin waves or the Madden?Julian oscillation (MJO), are often observed to experience convective enhancement when meeting with the westward-propagating 2-day waves. A scale interaction (SI) model is built to understand the nature of the interaction between the 2-day waves and moist Kelvin waves or MJO. In this model, the convective complex of moist Kelvin waves modulates the strength and location of the 2-day waves, which feed back through the upscale eddy transfer. An ageostrophic model describing the 2-day waves is first solved, and the resultant westward-propagating, backward-tilted disturbances are consistent with the observed 2-day waves. An explicit representation of eddy momentum transfer (EMT), eddy heating transfer (EHT), and eddy moisture transfer (EQT) arising from the 2-day waves is then formulated. The SI model shows that the 2-day waves in front of moist Kelvin waves produce an EMT accelerating the low-frequency easterly in the lower troposphere, an EHT cooling down the middle troposphere, and an EQT moistening the middle troposphere. These three transfer terms have comparable magnitude. Although the negative EHT tends to damp the moist Kelvin waves, both the EMT and EQT provide instability sources for the moist Kelvin waves. The 2-day waves also slow down the moist Kelvin waves, mainly through the advective effects of the EMT. So the unstable moist Kelvin waves may exhibit convective enhancement when meeting with the 2-day waves. The theoretical results presented here point to the need to further observe the multiscale structures within the moist Kelvin waves and the MJO.
    • Download: (1.591Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Model for the Interaction between 2-Day Waves and Moist Kelvin Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218696
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorLiu, Fei
    contributor authorWang, Bin
    date accessioned2017-06-09T16:54:14Z
    date available2017-06-09T16:54:14Z
    date copyright2012/02/01
    date issued2011
    identifier issn0022-4928
    identifier otherams-76268.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218696
    description abstracthe eastward-propagating tropical low-frequency disturbances, such as the moist Kelvin waves or the Madden?Julian oscillation (MJO), are often observed to experience convective enhancement when meeting with the westward-propagating 2-day waves. A scale interaction (SI) model is built to understand the nature of the interaction between the 2-day waves and moist Kelvin waves or MJO. In this model, the convective complex of moist Kelvin waves modulates the strength and location of the 2-day waves, which feed back through the upscale eddy transfer. An ageostrophic model describing the 2-day waves is first solved, and the resultant westward-propagating, backward-tilted disturbances are consistent with the observed 2-day waves. An explicit representation of eddy momentum transfer (EMT), eddy heating transfer (EHT), and eddy moisture transfer (EQT) arising from the 2-day waves is then formulated. The SI model shows that the 2-day waves in front of moist Kelvin waves produce an EMT accelerating the low-frequency easterly in the lower troposphere, an EHT cooling down the middle troposphere, and an EQT moistening the middle troposphere. These three transfer terms have comparable magnitude. Although the negative EHT tends to damp the moist Kelvin waves, both the EMT and EQT provide instability sources for the moist Kelvin waves. The 2-day waves also slow down the moist Kelvin waves, mainly through the advective effects of the EMT. So the unstable moist Kelvin waves may exhibit convective enhancement when meeting with the 2-day waves. The theoretical results presented here point to the need to further observe the multiscale structures within the moist Kelvin waves and the MJO.
    publisherAmerican Meteorological Society
    titleA Model for the Interaction between 2-Day Waves and Moist Kelvin Waves
    typeJournal Paper
    journal volume69
    journal issue2
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-11-0116.1
    journal fristpage611
    journal lastpage625
    treeJournal of the Atmospheric Sciences:;2011:;Volume( 069 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian