YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Extension of Smith’s Linear Theory of Orographic Precipitation: Introduction of Vertical Layers

    Source: Journal of the Atmospheric Sciences:;2011:;Volume( 068 ):;issue: 011::page 2695
    Author:
    Barstad, Idar
    ,
    Schüller, Felix
    DOI: 10.1175/JAS-D-10-05016.1
    Publisher: American Meteorological Society
    Abstract: his paper proposes an extension of a linear theory of orographic precipitation (OP). In the original theory, cloud water is produced by forced lifting over mountains, moderated by airflow dynamics. Controlled by a time delay τc, the cloud water converts into hydrometeors, which drift and fall out as precipitation. This drift is controlled by another time delay τf. The new extension proposed here introduces vertical layers, limited to two in this study. In this way, a more realistic vertical structure is permitted. Wind and stability may change with height and different microphysical properties may be assigned to the layers. For instance, a long fallout delay in the upper layer may represent snow that, after falling through a melting layer, turns into rain that has a short delay in the lower model layer. The sensitivity to microphysical delay and wind speed has been addressed for various interface heights separating the two layers. This layered approach allows adjustment of the water vapor influx and truncation of dry descent above a crest line, which, in the context of the existing linear theory, otherwise could cancel cloud water in lower layers. The introduction of layers requires more information in the vertical, but this may be derived, to some extent, from surface information.
    • Download: (1.235Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Extension of Smith’s Linear Theory of Orographic Precipitation: Introduction of Vertical Layers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218671
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBarstad, Idar
    contributor authorSchüller, Felix
    date accessioned2017-06-09T16:54:09Z
    date available2017-06-09T16:54:09Z
    date copyright2011/11/01
    date issued2011
    identifier issn0022-4928
    identifier otherams-76245.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218671
    description abstracthis paper proposes an extension of a linear theory of orographic precipitation (OP). In the original theory, cloud water is produced by forced lifting over mountains, moderated by airflow dynamics. Controlled by a time delay τc, the cloud water converts into hydrometeors, which drift and fall out as precipitation. This drift is controlled by another time delay τf. The new extension proposed here introduces vertical layers, limited to two in this study. In this way, a more realistic vertical structure is permitted. Wind and stability may change with height and different microphysical properties may be assigned to the layers. For instance, a long fallout delay in the upper layer may represent snow that, after falling through a melting layer, turns into rain that has a short delay in the lower model layer. The sensitivity to microphysical delay and wind speed has been addressed for various interface heights separating the two layers. This layered approach allows adjustment of the water vapor influx and truncation of dry descent above a crest line, which, in the context of the existing linear theory, otherwise could cancel cloud water in lower layers. The introduction of layers requires more information in the vertical, but this may be derived, to some extent, from surface information.
    publisherAmerican Meteorological Society
    titleAn Extension of Smith’s Linear Theory of Orographic Precipitation: Introduction of Vertical Layers
    typeJournal Paper
    journal volume68
    journal issue11
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-10-05016.1
    journal fristpage2695
    journal lastpage2709
    treeJournal of the Atmospheric Sciences:;2011:;Volume( 068 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian