YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Representation of Turbulent Mixing and Buoyancy Reversal in Bulk Cloud Models

    Source: Journal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 010::page 3666
    Author:
    Grabowski, Wojciech W.
    DOI: 10.1175/JAS4047.1
    Publisher: American Meteorological Society
    Abstract: This paper discusses the representation of subgrid-scale turbulent mixing in bulk models of warm (ice free) clouds, which assume instantaneous adjustment to grid-scale saturation. This is a reasonable assumption for condensation of water vapor because supersaturations inside clouds are typically small (?0.1% or smaller), except near cloud bases where about an order of magnitude larger supersaturations are anticipated. For the cloud evaporation, however, instantaneous adjustment to grid-scale saturation is questionable, especially when evaporation occurs as a result of turbulent mixing between a cloud and its unsaturated environment. This is because turbulent mixing between initially separated volumes of cloudy and cloud-free environmental air proceeds through a gradual filamentation of these volumes, with progressively increasing evaporation of cloud water during the approach to final homogenization. A relatively simple model of this chain of events is included in a bulk model of moist nonprecipitating thermodynamics. The model delays adjustment to saturation for cloud evaporation following the turbulent mixing until the volume can be assumed homogeneous. An additional prognostic variable, the width of a cloudy filament, is added to represent the progress of turbulent mixing and the approach to homogenization. Theoretical developments are illustrated by idealized 2D simulations of moist thermals rising from rest and realistic large-eddy simulations of a cloud field.
    • Download: (1.586Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Representation of Turbulent Mixing and Buoyancy Reversal in Bulk Cloud Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218643
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorGrabowski, Wojciech W.
    date accessioned2017-06-09T16:54:05Z
    date available2017-06-09T16:54:05Z
    date copyright2007/10/01
    date issued2007
    identifier issn0022-4928
    identifier otherams-76220.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218643
    description abstractThis paper discusses the representation of subgrid-scale turbulent mixing in bulk models of warm (ice free) clouds, which assume instantaneous adjustment to grid-scale saturation. This is a reasonable assumption for condensation of water vapor because supersaturations inside clouds are typically small (?0.1% or smaller), except near cloud bases where about an order of magnitude larger supersaturations are anticipated. For the cloud evaporation, however, instantaneous adjustment to grid-scale saturation is questionable, especially when evaporation occurs as a result of turbulent mixing between a cloud and its unsaturated environment. This is because turbulent mixing between initially separated volumes of cloudy and cloud-free environmental air proceeds through a gradual filamentation of these volumes, with progressively increasing evaporation of cloud water during the approach to final homogenization. A relatively simple model of this chain of events is included in a bulk model of moist nonprecipitating thermodynamics. The model delays adjustment to saturation for cloud evaporation following the turbulent mixing until the volume can be assumed homogeneous. An additional prognostic variable, the width of a cloudy filament, is added to represent the progress of turbulent mixing and the approach to homogenization. Theoretical developments are illustrated by idealized 2D simulations of moist thermals rising from rest and realistic large-eddy simulations of a cloud field.
    publisherAmerican Meteorological Society
    titleRepresentation of Turbulent Mixing and Buoyancy Reversal in Bulk Cloud Models
    typeJournal Paper
    journal volume64
    journal issue10
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS4047.1
    journal fristpage3666
    journal lastpage3680
    treeJournal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian