Modulation of Westerly Wind Bursts by Sea Surface Temperature: A Semistochastic Feedback for ENSOSource: Journal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 009::page 3281DOI: 10.1175/JAS4029.1Publisher: American Meteorological Society
Abstract: Westerly wind bursts (WWBs) in the equatorial Pacific are known to play a significant role in the development of El Niño events. They have typically been treated as a purely stochastic external forcing of ENSO. Recent observations, however, show that WWB characteristics depend upon the large-scale SST field. The consequences of such a WWB modulation by SST are examined using an ocean general circulation model coupled to a statistical atmosphere model (i.e., a hybrid coupled model). An explicit WWB component is added to the model with guidance from a 23-yr observational record. The WWB parameterization scheme is constructed such that the likelihood of WWB occurrence increases as the western Pacific warm pool extends: a ?semistochastic? formulation, which has both deterministic and stochastic elements. The location of the WWBs is parameterized to migrate with the edge of the warm pool. It is found that modulation of WWBs by SST strongly affects the characteristics of ENSO. In particular, coupled feedbacks between SST and WWBs may be sufficient to transfer the system from a damped regime to one with self-sustained oscillations. Modulated WWBs also play a role in the irregular timing of warm episodes and the asymmetry in the size of warm and cold events in this ENSO model. Parameterizing the modulation of WWBs by an increase of the linear air?sea coupling coefficient seems to miss important dynamical processes, and a purely stochastic representation of WWBs elicits only a weak ocean response. Based upon this evidence, it is proposed that WWBs may need to be treated as an internal part of the coupled ENSO system, and that the detailed knowledge of wind burst dynamics may be necessary to explain the characteristics of ENSO.
|
Collections
Show full item record
contributor author | Gebbie, Geoffrey | |
contributor author | Eisenman, Ian | |
contributor author | Wittenberg, Andrew | |
contributor author | Tziperman, Eli | |
date accessioned | 2017-06-09T16:54:03Z | |
date available | 2017-06-09T16:54:03Z | |
date copyright | 2007/09/01 | |
date issued | 2007 | |
identifier issn | 0022-4928 | |
identifier other | ams-76209.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4218631 | |
description abstract | Westerly wind bursts (WWBs) in the equatorial Pacific are known to play a significant role in the development of El Niño events. They have typically been treated as a purely stochastic external forcing of ENSO. Recent observations, however, show that WWB characteristics depend upon the large-scale SST field. The consequences of such a WWB modulation by SST are examined using an ocean general circulation model coupled to a statistical atmosphere model (i.e., a hybrid coupled model). An explicit WWB component is added to the model with guidance from a 23-yr observational record. The WWB parameterization scheme is constructed such that the likelihood of WWB occurrence increases as the western Pacific warm pool extends: a ?semistochastic? formulation, which has both deterministic and stochastic elements. The location of the WWBs is parameterized to migrate with the edge of the warm pool. It is found that modulation of WWBs by SST strongly affects the characteristics of ENSO. In particular, coupled feedbacks between SST and WWBs may be sufficient to transfer the system from a damped regime to one with self-sustained oscillations. Modulated WWBs also play a role in the irregular timing of warm episodes and the asymmetry in the size of warm and cold events in this ENSO model. Parameterizing the modulation of WWBs by an increase of the linear air?sea coupling coefficient seems to miss important dynamical processes, and a purely stochastic representation of WWBs elicits only a weak ocean response. Based upon this evidence, it is proposed that WWBs may need to be treated as an internal part of the coupled ENSO system, and that the detailed knowledge of wind burst dynamics may be necessary to explain the characteristics of ENSO. | |
publisher | American Meteorological Society | |
title | Modulation of Westerly Wind Bursts by Sea Surface Temperature: A Semistochastic Feedback for ENSO | |
type | Journal Paper | |
journal volume | 64 | |
journal issue | 9 | |
journal title | Journal of the Atmospheric Sciences | |
identifier doi | 10.1175/JAS4029.1 | |
journal fristpage | 3281 | |
journal lastpage | 3295 | |
tree | Journal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 009 | |
contenttype | Fulltext |