YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiscale Models with Moisture and Systematic Strategies for Superparameterization

    Source: Journal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 007::page 2726
    Author:
    Majda, Andrew J.
    DOI: 10.1175/JAS3976.1
    Publisher: American Meteorological Society
    Abstract: The accurate parameterization of moist convection presents a major challenge for the accurate prediction of weather and climate through numerical models. Superparameterization is a promising recent alternative strategy for including the effects of moist convection through explicit turbulent fluxes calculated from a cloud-resolving model. Basic scales for cloud-resolving modeling are the microscales on the order of 10 km in space on time scales on the order of 15 min, where vertical and horizontal motions are comparable and moist processes are strongly nonlinear (meso-gamma scale). In this paper, systematic multiscale asymptotic analysis is utilized to develop simplified microscale mesoscale dynamic (MMD) models for interaction between the microscales and spatiotemporal mesoscales on the order of 100 km and 2.5 h (meso-beta scale). The new MMD models lead to a systematic framework for superparameterization for numerical weather prediction (NWP) generalizing the traditional column modeling framework. The MMD formulation also provides a flexible systematic framework for devising new parameterization strategies for NWP intermediate between the two extremes of column modeling and detailed cloud-resolving modeling. It is also established here that these MMD models fit crudely into the recent systematic multiscale framework developed to explain the observed larger-scale statistical self-similarity of tropical convection, and therefore provide a systematic framework for superparameterization. Finally, it is shown that the new MMD models have the structure of a heterogeneous multiscale method so that many numerical techniques recently developed in the applied mathematics literature can be applied to this formulation.
    • Download: (178.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiscale Models with Moisture and Systematic Strategies for Superparameterization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218575
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMajda, Andrew J.
    date accessioned2017-06-09T16:53:51Z
    date available2017-06-09T16:53:51Z
    date copyright2007/07/01
    date issued2007
    identifier issn0022-4928
    identifier otherams-76159.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218575
    description abstractThe accurate parameterization of moist convection presents a major challenge for the accurate prediction of weather and climate through numerical models. Superparameterization is a promising recent alternative strategy for including the effects of moist convection through explicit turbulent fluxes calculated from a cloud-resolving model. Basic scales for cloud-resolving modeling are the microscales on the order of 10 km in space on time scales on the order of 15 min, where vertical and horizontal motions are comparable and moist processes are strongly nonlinear (meso-gamma scale). In this paper, systematic multiscale asymptotic analysis is utilized to develop simplified microscale mesoscale dynamic (MMD) models for interaction between the microscales and spatiotemporal mesoscales on the order of 100 km and 2.5 h (meso-beta scale). The new MMD models lead to a systematic framework for superparameterization for numerical weather prediction (NWP) generalizing the traditional column modeling framework. The MMD formulation also provides a flexible systematic framework for devising new parameterization strategies for NWP intermediate between the two extremes of column modeling and detailed cloud-resolving modeling. It is also established here that these MMD models fit crudely into the recent systematic multiscale framework developed to explain the observed larger-scale statistical self-similarity of tropical convection, and therefore provide a systematic framework for superparameterization. Finally, it is shown that the new MMD models have the structure of a heterogeneous multiscale method so that many numerical techniques recently developed in the applied mathematics literature can be applied to this formulation.
    publisherAmerican Meteorological Society
    titleMultiscale Models with Moisture and Systematic Strategies for Superparameterization
    typeJournal Paper
    journal volume64
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3976.1
    journal fristpage2726
    journal lastpage2734
    treeJournal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian