YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modal and Nonmodal Symmetric Perturbations. Part II: Nonmodal Growths Measured by Total Perturbation Energy

    Source: Journal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 006::page 1764
    Author:
    Xu, Qin
    ,
    Lei, Ting
    ,
    Gao, Shouting
    DOI: 10.1175/JAS3973.1
    Publisher: American Meteorological Society
    Abstract: Maximum nonmodal growths of total perturbation energy are computed for symmetric perturbations constructed from the normal modes presented in Part I. The results show that the maximum nonmodal growths are larger than the energy growth produced by any single normal mode for a give optimization time, and this is simply because the normal modes are nonorthogonal (measured by the inner product associated with the total perturbation energy norm). It is shown that the maximum nonmodal growths are produced mainly by paired modes, and this can be explained by the fact that the streamfunction component modes are partially orthogonal between different pairs and parallel within each pair in the streamfunction subspace. When the optimization time is very short (compared with the inverse Coriolis parameter), the nonmodal growth is produced mainly by the paired fastest propagating modes. When the optimization time is not short, the maximum nonmodal growth is produced almost solely by the paired slowest propagating modes and the growth can be very large for a wide range of optimization time if the parameter point is near the boundary and outside the unstable region. If the parameter point is near the boundary but inside the unstable region, the paired slowest propagating modes can contribute significantly to the energy growth before the fastest growing mode becomes the dominant component. The maximum nonmodal growths produced by paired modes are derived analytically. The analytical solutions compare well with the numerical results obtained in the truncated normal mode space. The analytical solutions reveal the basic mechanisms for four types of maximum nonmodal energy growths: the PP1 and PP2 nonmodal growths produced by paired propagating modes and the GD1 and GD2 nonmodal growths produced by paired growing and decaying modes. The PP1 growth is characterized by the increase of the cross-band kinetic energy that excessively offsets the decrease of the along-band kinetic and buoyancy energy. The situation is opposite for the PP2 growth. The GD1 (or GD2) growth is characterized by the reduction of the initial cross-band kinetic energy (or initial along-band kinetic and buoyancy energy) due to the inclusion of the decaying mode.
    • Download: (715.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modal and Nonmodal Symmetric Perturbations. Part II: Nonmodal Growths Measured by Total Perturbation Energy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218572
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorXu, Qin
    contributor authorLei, Ting
    contributor authorGao, Shouting
    date accessioned2017-06-09T16:53:50Z
    date available2017-06-09T16:53:50Z
    date copyright2007/06/01
    date issued2007
    identifier issn0022-4928
    identifier otherams-76156.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218572
    description abstractMaximum nonmodal growths of total perturbation energy are computed for symmetric perturbations constructed from the normal modes presented in Part I. The results show that the maximum nonmodal growths are larger than the energy growth produced by any single normal mode for a give optimization time, and this is simply because the normal modes are nonorthogonal (measured by the inner product associated with the total perturbation energy norm). It is shown that the maximum nonmodal growths are produced mainly by paired modes, and this can be explained by the fact that the streamfunction component modes are partially orthogonal between different pairs and parallel within each pair in the streamfunction subspace. When the optimization time is very short (compared with the inverse Coriolis parameter), the nonmodal growth is produced mainly by the paired fastest propagating modes. When the optimization time is not short, the maximum nonmodal growth is produced almost solely by the paired slowest propagating modes and the growth can be very large for a wide range of optimization time if the parameter point is near the boundary and outside the unstable region. If the parameter point is near the boundary but inside the unstable region, the paired slowest propagating modes can contribute significantly to the energy growth before the fastest growing mode becomes the dominant component. The maximum nonmodal growths produced by paired modes are derived analytically. The analytical solutions compare well with the numerical results obtained in the truncated normal mode space. The analytical solutions reveal the basic mechanisms for four types of maximum nonmodal energy growths: the PP1 and PP2 nonmodal growths produced by paired propagating modes and the GD1 and GD2 nonmodal growths produced by paired growing and decaying modes. The PP1 growth is characterized by the increase of the cross-band kinetic energy that excessively offsets the decrease of the along-band kinetic and buoyancy energy. The situation is opposite for the PP2 growth. The GD1 (or GD2) growth is characterized by the reduction of the initial cross-band kinetic energy (or initial along-band kinetic and buoyancy energy) due to the inclusion of the decaying mode.
    publisherAmerican Meteorological Society
    titleModal and Nonmodal Symmetric Perturbations. Part II: Nonmodal Growths Measured by Total Perturbation Energy
    typeJournal Paper
    journal volume64
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3973.1
    journal fristpage1764
    journal lastpage1781
    treeJournal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian