YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Spectral Ice Habit Prediction System (SHIPS). Part I: Model Description and Simulation of the Vapor Deposition Process

    Source: Journal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 007::page 2210
    Author:
    Hashino, T.
    ,
    Tripoli, G. J.
    DOI: 10.1175/JAS3963.1
    Publisher: American Meteorological Society
    Abstract: This paper describes the Spectral Ice Habit Prediction System (SHIPS), which represents a continuous-property approach to microphysics simulation in an Eulerian cloud-resolving model (CRM). A two-moment hybrid-bin method is adopted to predict the solid hydrometeor distribution, where the distribution is divided into the mass bins with a simple mass distribution inside each bin. Each bin is characterized by a single representative ice crystal habit and the type of solid hydrometeor. These characteristics are diagnosed based on a series of particle property variables (PPVs) of solid hydrometeors that reflect the history of microphysical processes and the mixing between bins and air parcels in space. Thus, SHIPS allows solid hydrometeors to evolve characteristics and size distribution based on their movement through a cloud. SHIPS was installed into the University of Wisconsin-Nonhydrostatic Modeling System (UW-NMS) and tested for ice nucleation and vapor deposition processes. Two-dimensional idealized simulations were employed to simulate a winter orographic storm observed during the second Improvement of Microphysical Parameterization through Observational Verification Experiment (IMPROVE-2) campaign. The simulated vertical distributions of ice crystal habits showed that the dynamic advection of dendrites produces wider dendritic growth region than local atmospheric conditions suggest. SHIPS showed the sensitivities of the habit distribution in the low- and midlevel to the upper-level growth mode (T < ?20°C) of ice crystals through the sedimentation. Comparison of the results to aircraft observations casts doubt on the role of the columnar growth mode (T < ?20°C) traditionally thought to be dominant in the literature. The results demonstrated how the complexity of the vapor deposition growth of ice crystals, including dendrites and capped columns, in varying temperature and moisture lead to particular observed habits.
    • Download: (2.812Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Spectral Ice Habit Prediction System (SHIPS). Part I: Model Description and Simulation of the Vapor Deposition Process

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218561
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHashino, T.
    contributor authorTripoli, G. J.
    date accessioned2017-06-09T16:53:49Z
    date available2017-06-09T16:53:49Z
    date copyright2007/07/01
    date issued2007
    identifier issn0022-4928
    identifier otherams-76146.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218561
    description abstractThis paper describes the Spectral Ice Habit Prediction System (SHIPS), which represents a continuous-property approach to microphysics simulation in an Eulerian cloud-resolving model (CRM). A two-moment hybrid-bin method is adopted to predict the solid hydrometeor distribution, where the distribution is divided into the mass bins with a simple mass distribution inside each bin. Each bin is characterized by a single representative ice crystal habit and the type of solid hydrometeor. These characteristics are diagnosed based on a series of particle property variables (PPVs) of solid hydrometeors that reflect the history of microphysical processes and the mixing between bins and air parcels in space. Thus, SHIPS allows solid hydrometeors to evolve characteristics and size distribution based on their movement through a cloud. SHIPS was installed into the University of Wisconsin-Nonhydrostatic Modeling System (UW-NMS) and tested for ice nucleation and vapor deposition processes. Two-dimensional idealized simulations were employed to simulate a winter orographic storm observed during the second Improvement of Microphysical Parameterization through Observational Verification Experiment (IMPROVE-2) campaign. The simulated vertical distributions of ice crystal habits showed that the dynamic advection of dendrites produces wider dendritic growth region than local atmospheric conditions suggest. SHIPS showed the sensitivities of the habit distribution in the low- and midlevel to the upper-level growth mode (T < ?20°C) of ice crystals through the sedimentation. Comparison of the results to aircraft observations casts doubt on the role of the columnar growth mode (T < ?20°C) traditionally thought to be dominant in the literature. The results demonstrated how the complexity of the vapor deposition growth of ice crystals, including dendrites and capped columns, in varying temperature and moisture lead to particular observed habits.
    publisherAmerican Meteorological Society
    titleThe Spectral Ice Habit Prediction System (SHIPS). Part I: Model Description and Simulation of the Vapor Deposition Process
    typeJournal Paper
    journal volume64
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3963.1
    journal fristpage2210
    journal lastpage2237
    treeJournal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian