YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cancellation of Aerosol Indirect Effects in Marine Stratocumulus through Cloud Thinning

    Source: Journal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 007::page 2657
    Author:
    Wood, Robert
    DOI: 10.1175/JAS3942.1
    Publisher: American Meteorological Society
    Abstract: Applying perturbation theory within a mixed layer framework, the response of the marine boundary layer (MBL) cloud thickness h to imposed increases of the cloud droplet concentration Nd as a surrogate for increases in cloud condensation nuclei (CCN) concentrations is examined. An analytical formulation is used to quantify the response and demonstrate theoretically that for the range of environmental conditions found over the subtropical eastern oceans, on time scales of less than a day, the cloud thickness feedback response is largely determined by a balance between the moistening/cooling of the MBL resulting from the suppression of surface precipitation, and the drying/warming resulting from enhanced entrainment resulting from increased turbulent kinetic energy. Quantifying the transient cloud response as a ratio of the second to the first indirect effects demonstrates that the nature of the feedback is critically dependent upon the nature of the unperturbed state, with the cloud-base height zcb being the single most important determinant. For zcb < 400 m, increasing Nd leads to cloud thickening in accordance with the Albrecht hypothesis. However, for zcb > 400 m, cloud thinning occurs, which results in a feedback effect that increasingly cancels the Twomey effect as zcb increases. The environmental conditions favoring an elevated cloud base are relatively weak lower-tropospheric stability and a dry free troposphere, although the former is probably more important over the subtropical eastern oceans. On longer time scales an invariable thickening response is found, and thus accurate quantification of the aerosol indirect effects will require a good understanding of the processes that control the time scale over which aerosol perturbations are modified.
    • Download: (913.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cancellation of Aerosol Indirect Effects in Marine Stratocumulus through Cloud Thinning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218538
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorWood, Robert
    date accessioned2017-06-09T16:53:44Z
    date available2017-06-09T16:53:44Z
    date copyright2007/07/01
    date issued2007
    identifier issn0022-4928
    identifier otherams-76125.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218538
    description abstractApplying perturbation theory within a mixed layer framework, the response of the marine boundary layer (MBL) cloud thickness h to imposed increases of the cloud droplet concentration Nd as a surrogate for increases in cloud condensation nuclei (CCN) concentrations is examined. An analytical formulation is used to quantify the response and demonstrate theoretically that for the range of environmental conditions found over the subtropical eastern oceans, on time scales of less than a day, the cloud thickness feedback response is largely determined by a balance between the moistening/cooling of the MBL resulting from the suppression of surface precipitation, and the drying/warming resulting from enhanced entrainment resulting from increased turbulent kinetic energy. Quantifying the transient cloud response as a ratio of the second to the first indirect effects demonstrates that the nature of the feedback is critically dependent upon the nature of the unperturbed state, with the cloud-base height zcb being the single most important determinant. For zcb < 400 m, increasing Nd leads to cloud thickening in accordance with the Albrecht hypothesis. However, for zcb > 400 m, cloud thinning occurs, which results in a feedback effect that increasingly cancels the Twomey effect as zcb increases. The environmental conditions favoring an elevated cloud base are relatively weak lower-tropospheric stability and a dry free troposphere, although the former is probably more important over the subtropical eastern oceans. On longer time scales an invariable thickening response is found, and thus accurate quantification of the aerosol indirect effects will require a good understanding of the processes that control the time scale over which aerosol perturbations are modified.
    publisherAmerican Meteorological Society
    titleCancellation of Aerosol Indirect Effects in Marine Stratocumulus through Cloud Thinning
    typeJournal Paper
    journal volume64
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3942.1
    journal fristpage2657
    journal lastpage2669
    treeJournal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian