YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Circulation Regimes due to Attractor Merging in Atmospheric Models

    Source: Journal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 006::page 2029
    Author:
    Sempf, Mario
    ,
    Dethloff, Klaus
    ,
    Handorf, Dörthe
    ,
    Kurgansky, Michael V.
    DOI: 10.1175/JAS3923.1
    Publisher: American Meteorological Society
    Abstract: From a dynamical systems theory perspective, the mechanisms of atmospheric regime behavior in a barotropic model, a pseudobarotropic model, and a baroclinic three-level model, where all of them show quite realistic regimes, are unveiled. Along with this, the role played by multiple equilibria for the emergence of regimes in barotropic models is critically reexamined. In the barotropic model, a sequence of bifurcations is observed, which leads to the merging of coexisting attractors and results in two pronounced regimes corresponding to high- and low-index flow. The pseudobarotropic model is constructed from the three-level model by introducing a strong internal friction between the levels and switching off the interfacial diabatic forcing, and it has essentially the same bifurcation properties and regimes as the truly barotropic model. A continuous metamorphosis between the pseudobarotropic and the original baroclinic three-level model is accomplished by a linear interpolation of parameters and forcing fields between these two models. Both local and global bifurcations occurring during this transition to baroclinicity are analyzed in detail, yielding two main results. First, almost all of the multiple steady states of the pseudobarotropic model owe their existence merely to the fact that the surface friction has generally to be chosen unphysically weak in barotropic models in order to obtain chaotic behavior. Second, the circulation regimes in both the pseudobarotropic model and the baroclinic three-level model are proven to emerge from the unification of multiple attractors, which coexist at intermediate strength of baroclinicity and correspond to low- or high-index flow configurations, respectively.
    • Download: (1.857Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Circulation Regimes due to Attractor Merging in Atmospheric Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218517
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSempf, Mario
    contributor authorDethloff, Klaus
    contributor authorHandorf, Dörthe
    contributor authorKurgansky, Michael V.
    date accessioned2017-06-09T16:53:41Z
    date available2017-06-09T16:53:41Z
    date copyright2007/06/01
    date issued2007
    identifier issn0022-4928
    identifier otherams-76106.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218517
    description abstractFrom a dynamical systems theory perspective, the mechanisms of atmospheric regime behavior in a barotropic model, a pseudobarotropic model, and a baroclinic three-level model, where all of them show quite realistic regimes, are unveiled. Along with this, the role played by multiple equilibria for the emergence of regimes in barotropic models is critically reexamined. In the barotropic model, a sequence of bifurcations is observed, which leads to the merging of coexisting attractors and results in two pronounced regimes corresponding to high- and low-index flow. The pseudobarotropic model is constructed from the three-level model by introducing a strong internal friction between the levels and switching off the interfacial diabatic forcing, and it has essentially the same bifurcation properties and regimes as the truly barotropic model. A continuous metamorphosis between the pseudobarotropic and the original baroclinic three-level model is accomplished by a linear interpolation of parameters and forcing fields between these two models. Both local and global bifurcations occurring during this transition to baroclinicity are analyzed in detail, yielding two main results. First, almost all of the multiple steady states of the pseudobarotropic model owe their existence merely to the fact that the surface friction has generally to be chosen unphysically weak in barotropic models in order to obtain chaotic behavior. Second, the circulation regimes in both the pseudobarotropic model and the baroclinic three-level model are proven to emerge from the unification of multiple attractors, which coexist at intermediate strength of baroclinicity and correspond to low- or high-index flow configurations, respectively.
    publisherAmerican Meteorological Society
    titleCirculation Regimes due to Attractor Merging in Atmospheric Models
    typeJournal Paper
    journal volume64
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3923.1
    journal fristpage2029
    journal lastpage2044
    treeJournal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian