Radiative Transfer Simulations Using Mesoscale Cloud Model Outputs: Comparisons with Passive Microwave and Infrared Satellite Observations for MidlatitudesSource: Journal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 005::page 1550Author:Meirold-Mautner, Ingo
,
Prigent, Catherine
,
Defer, Eric
,
Pardo, Juan R.
,
Chaboureau, Jean-Pierre
,
Pinty, Jean-Pierre
,
Mech, Mario
,
Crewell, Susanne
DOI: 10.1175/JAS3896.1Publisher: American Meteorological Society
Abstract: Real midlatitude meteorological cases are simulated over western Europe with the cloud mesoscale model Méso-NH, and the outputs are used to calculate brightness temperatures at microwave frequencies with the Atmospheric Transmission at Microwave (ATM) radiative transfer model. Satellite-observed brightness temperatures (TBs) from the Advanced Microwave Scanning Unit B (AMSU-B) and the Special Sensor Microwave Imager (SSM/I) are compared to the simulated ones. In this paper, one specific situation is examined in detail. The infrared responses have also been calculated and compared to the Meteosat coincident observations. Overall agreement is obtained between the simulated and the observed brightness temperatures in the microwave and in the infrared. The large-scale dynamical structure of the cloud system is well captured by Méso-NH. However, in regions with large quantities of frozen hydrometeors, the comparison shows that the simulated microwave TBs are higher than the measured ones in the window channels at high frequencies, indicating that the calculation does not predict enough scattering. The factors responsible for the scattering (frozen particle distribution, calculation of particle dielectric properties, and nonsphericity of the particles) are analyzed. To assess the quality of the cloud and precipitation simulations by Méso-NH, the microphysical fields predicted by the German Lokal-Modell are also considered. Results show that in these midlatitude situations, the treatment of the snow category has a high impact on the simulated brightness temperatures. The snow scattering parameters are tuned to match the discrete dipole approximation calculations and to obtain a good agreement between simulations and observations even in the areas with significant frozen particles. Analysis of the other meteorological simulations confirms these results. Comparing simulations and observations in the microwave provides a powerful evaluation of resolved clouds in mesoscale models, especially the precipitating ice phase.
|
Collections
Show full item record
contributor author | Meirold-Mautner, Ingo | |
contributor author | Prigent, Catherine | |
contributor author | Defer, Eric | |
contributor author | Pardo, Juan R. | |
contributor author | Chaboureau, Jean-Pierre | |
contributor author | Pinty, Jean-Pierre | |
contributor author | Mech, Mario | |
contributor author | Crewell, Susanne | |
date accessioned | 2017-06-09T16:53:36Z | |
date available | 2017-06-09T16:53:36Z | |
date copyright | 2007/05/01 | |
date issued | 2007 | |
identifier issn | 0022-4928 | |
identifier other | ams-76079.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4218486 | |
description abstract | Real midlatitude meteorological cases are simulated over western Europe with the cloud mesoscale model Méso-NH, and the outputs are used to calculate brightness temperatures at microwave frequencies with the Atmospheric Transmission at Microwave (ATM) radiative transfer model. Satellite-observed brightness temperatures (TBs) from the Advanced Microwave Scanning Unit B (AMSU-B) and the Special Sensor Microwave Imager (SSM/I) are compared to the simulated ones. In this paper, one specific situation is examined in detail. The infrared responses have also been calculated and compared to the Meteosat coincident observations. Overall agreement is obtained between the simulated and the observed brightness temperatures in the microwave and in the infrared. The large-scale dynamical structure of the cloud system is well captured by Méso-NH. However, in regions with large quantities of frozen hydrometeors, the comparison shows that the simulated microwave TBs are higher than the measured ones in the window channels at high frequencies, indicating that the calculation does not predict enough scattering. The factors responsible for the scattering (frozen particle distribution, calculation of particle dielectric properties, and nonsphericity of the particles) are analyzed. To assess the quality of the cloud and precipitation simulations by Méso-NH, the microphysical fields predicted by the German Lokal-Modell are also considered. Results show that in these midlatitude situations, the treatment of the snow category has a high impact on the simulated brightness temperatures. The snow scattering parameters are tuned to match the discrete dipole approximation calculations and to obtain a good agreement between simulations and observations even in the areas with significant frozen particles. Analysis of the other meteorological simulations confirms these results. Comparing simulations and observations in the microwave provides a powerful evaluation of resolved clouds in mesoscale models, especially the precipitating ice phase. | |
publisher | American Meteorological Society | |
title | Radiative Transfer Simulations Using Mesoscale Cloud Model Outputs: Comparisons with Passive Microwave and Infrared Satellite Observations for Midlatitudes | |
type | Journal Paper | |
journal volume | 64 | |
journal issue | 5 | |
journal title | Journal of the Atmospheric Sciences | |
identifier doi | 10.1175/JAS3896.1 | |
journal fristpage | 1550 | |
journal lastpage | 1568 | |
tree | Journal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 005 | |
contenttype | Fulltext |