YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    New Multiscale Models and Self-Similarity in Tropical Convection

    Source: Journal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 004::page 1393
    Author:
    Majda, Andrew J.
    DOI: 10.1175/JAS3880.1
    Publisher: American Meteorological Society
    Abstract: One of the unexplained striking features of tropical convection is the observed statistical self-similarity in clusters, superclusters, and intraseasonal oscillations through complex multiscale processes ranging from the mesoscales to the equatorial synoptic scales to the intraseasonal/planetary scales. Here new multispatial-scale, multitime-scale, simplified asymptotic models are derived systematically from the equatorial primitive equations on the range of scales from mesoscale to equatorial synoptic to planetary/intraseasonal, which provide a useful analytic framework for addressing these issues. New mesoscale equatorial synoptic dynamical (MESD) models and balanced MESD (BMESD) models are developed for the multitime, multispace interaction from mesoscales to equatorial synoptic scales; new multitime versions of the intraseasonal planetary equatorial synoptic dynamics (IPESD) models are developed for multiple spatiotemporal interactions on equatorial synoptic scales and planetary scales. The mathematical character derived below for all these simplified models explicitly demonstrates that the main nonlinear interactions across scales are quasi-linear where eddy flux divergences of momentum and temperature from nonlinear advection from the smaller-scale spatiotemporal flows as well as mean source effects accumulate in time and drive the waves on the successively larger spatiotemporal scales. Furthermore, these processes that transfer energy to the next larger, longer, spatiotemporal scales are self-similar in a suitable sense established here. On the other hand, the larger scales set the environment for this transport through processes such as mean advection of the smaller scales.
    • Download: (194.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      New Multiscale Models and Self-Similarity in Tropical Convection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218470
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMajda, Andrew J.
    date accessioned2017-06-09T16:53:32Z
    date available2017-06-09T16:53:32Z
    date copyright2007/04/01
    date issued2007
    identifier issn0022-4928
    identifier otherams-76064.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218470
    description abstractOne of the unexplained striking features of tropical convection is the observed statistical self-similarity in clusters, superclusters, and intraseasonal oscillations through complex multiscale processes ranging from the mesoscales to the equatorial synoptic scales to the intraseasonal/planetary scales. Here new multispatial-scale, multitime-scale, simplified asymptotic models are derived systematically from the equatorial primitive equations on the range of scales from mesoscale to equatorial synoptic to planetary/intraseasonal, which provide a useful analytic framework for addressing these issues. New mesoscale equatorial synoptic dynamical (MESD) models and balanced MESD (BMESD) models are developed for the multitime, multispace interaction from mesoscales to equatorial synoptic scales; new multitime versions of the intraseasonal planetary equatorial synoptic dynamics (IPESD) models are developed for multiple spatiotemporal interactions on equatorial synoptic scales and planetary scales. The mathematical character derived below for all these simplified models explicitly demonstrates that the main nonlinear interactions across scales are quasi-linear where eddy flux divergences of momentum and temperature from nonlinear advection from the smaller-scale spatiotemporal flows as well as mean source effects accumulate in time and drive the waves on the successively larger spatiotemporal scales. Furthermore, these processes that transfer energy to the next larger, longer, spatiotemporal scales are self-similar in a suitable sense established here. On the other hand, the larger scales set the environment for this transport through processes such as mean advection of the smaller scales.
    publisherAmerican Meteorological Society
    titleNew Multiscale Models and Self-Similarity in Tropical Convection
    typeJournal Paper
    journal volume64
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3880.1
    journal fristpage1393
    journal lastpage1404
    treeJournal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian