YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bulk Models of the Sheared Convective Boundary Layer: Evaluation through Large Eddy Simulations

    Source: Journal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 003::page 786
    Author:
    Conzemius, Robert
    ,
    Fedorovich, Evgeni
    DOI: 10.1175/JAS3870.1
    Publisher: American Meteorological Society
    Abstract: A set of first-order model (FOM) equations, describing the sheared convective boundary layer (CBL) evolution, is derived. The model output is compared with predictions of the zero-order bulk model (ZOM) for the same CBL type. Large eddy simulation (LES) data are employed to test both models. The results show an advantage of the FOM over the ZOM in the prediction of entrainment, but in many CBL cases, the predictions by the two models are fairly close. Despite its relative simplicity, the ZOM is able to quantify the effects of shear production and dissipation in an integral sense?as long as the constants describing the integral dissipation of shear- and buoyancy-produced turbulence kinetic energy (TKE) are prescribed appropriately and the shear is weak enough that the denominator of the ZOM entrainment equation does not approach zero, causing a numerical instability in the solutions. Overall, the FOM better predicts the entrainment rate due to its ability to avoid this instability. Also, the FOM in a more physically consistent manner reproduces the sheared CBL entrainment zone, whose depth is controlled by a balance among shear generation, buoyancy consumption, and dissipation of TKE. Such balance is manifested by nearly constant values of Richardson numbers observed in the entrainment zone of simulated sheared CBLs. Conducted model tests support the conclusion that the surface shear generation of TKE and its corresponding dissipation, as well as the nonstationary terms, can be omitted from the integral TKE balance equation.
    • Download: (1.424Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bulk Models of the Sheared Convective Boundary Layer: Evaluation through Large Eddy Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218459
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorConzemius, Robert
    contributor authorFedorovich, Evgeni
    date accessioned2017-06-09T16:53:29Z
    date available2017-06-09T16:53:29Z
    date copyright2007/03/01
    date issued2007
    identifier issn0022-4928
    identifier otherams-76054.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218459
    description abstractA set of first-order model (FOM) equations, describing the sheared convective boundary layer (CBL) evolution, is derived. The model output is compared with predictions of the zero-order bulk model (ZOM) for the same CBL type. Large eddy simulation (LES) data are employed to test both models. The results show an advantage of the FOM over the ZOM in the prediction of entrainment, but in many CBL cases, the predictions by the two models are fairly close. Despite its relative simplicity, the ZOM is able to quantify the effects of shear production and dissipation in an integral sense?as long as the constants describing the integral dissipation of shear- and buoyancy-produced turbulence kinetic energy (TKE) are prescribed appropriately and the shear is weak enough that the denominator of the ZOM entrainment equation does not approach zero, causing a numerical instability in the solutions. Overall, the FOM better predicts the entrainment rate due to its ability to avoid this instability. Also, the FOM in a more physically consistent manner reproduces the sheared CBL entrainment zone, whose depth is controlled by a balance among shear generation, buoyancy consumption, and dissipation of TKE. Such balance is manifested by nearly constant values of Richardson numbers observed in the entrainment zone of simulated sheared CBLs. Conducted model tests support the conclusion that the surface shear generation of TKE and its corresponding dissipation, as well as the nonstationary terms, can be omitted from the integral TKE balance equation.
    publisherAmerican Meteorological Society
    titleBulk Models of the Sheared Convective Boundary Layer: Evaluation through Large Eddy Simulations
    typeJournal Paper
    journal volume64
    journal issue3
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3870.1
    journal fristpage786
    journal lastpage807
    treeJournal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian