YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Resonance in Optimal Perturbation Evolution. Part I: Two-Layer Eady Model

    Source: Journal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 003::page 673
    Author:
    de Vries, H.
    ,
    Opsteegh, J. D.
    DOI: 10.1175/JAS3867.1
    Publisher: American Meteorological Society
    Abstract: A detailed investigation has been performed of the role of the different growth mechanisms (resonance, potential vorticity unshielding, and normal-mode baroclinic instability) in the evolution of optimal perturbations constructed for a two-layer Eady model and a kinetic energy norm. The two-layer Eady model is obtained by replacing the conventional upper rigid lid by a simple but realistic stratosphere. To make an unambiguous discussion possible, generally applicable techniques have been developed. At the heart of these techniques lies a description of the linear dynamics in terms of a variable number of potential vorticity building blocks (PVBs), which are zonally wavelike, vertically localized sheets of potential vorticity. If the optimal perturbation is composed of only one PVB, the rapid surface cyclogenesis can be attributed to the growth of the surface PVB (the edge wave), which is excited by the tropospheric PVB via a linear resonance effect. If the optimal perturbation is constructed using multiple PVBs, this simple picture is modified only in the sense that PV unshielding dominates the surface amplification for a short time after initialization. The unshielding mechanism rapidly creates large streamfunction values at the surface, as a result of which the resonance effect is much stronger. A similar resonance effect between the tropospheric PVBs and the tropopause PVB acts negatively on the surface streamfunction amplification. The influence of the stratosphere to the surface development is negligible. In all cases reported here, the growth due to traditional normal-mode baroclinic instability contributes either negative or only little to the surface development up to the optimization time of two days. It takes at least four days for the flow to become fully dominated by normal-mode growth, thereby confirming that finite-time optimal perturbation growth differs in many aspects fundamentally from asymptotic normal-mode baroclinic instability.
    • Download: (3.095Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Resonance in Optimal Perturbation Evolution. Part I: Two-Layer Eady Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218455
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorde Vries, H.
    contributor authorOpsteegh, J. D.
    date accessioned2017-06-09T16:53:29Z
    date available2017-06-09T16:53:29Z
    date copyright2007/03/01
    date issued2007
    identifier issn0022-4928
    identifier otherams-76051.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218455
    description abstractA detailed investigation has been performed of the role of the different growth mechanisms (resonance, potential vorticity unshielding, and normal-mode baroclinic instability) in the evolution of optimal perturbations constructed for a two-layer Eady model and a kinetic energy norm. The two-layer Eady model is obtained by replacing the conventional upper rigid lid by a simple but realistic stratosphere. To make an unambiguous discussion possible, generally applicable techniques have been developed. At the heart of these techniques lies a description of the linear dynamics in terms of a variable number of potential vorticity building blocks (PVBs), which are zonally wavelike, vertically localized sheets of potential vorticity. If the optimal perturbation is composed of only one PVB, the rapid surface cyclogenesis can be attributed to the growth of the surface PVB (the edge wave), which is excited by the tropospheric PVB via a linear resonance effect. If the optimal perturbation is constructed using multiple PVBs, this simple picture is modified only in the sense that PV unshielding dominates the surface amplification for a short time after initialization. The unshielding mechanism rapidly creates large streamfunction values at the surface, as a result of which the resonance effect is much stronger. A similar resonance effect between the tropospheric PVBs and the tropopause PVB acts negatively on the surface streamfunction amplification. The influence of the stratosphere to the surface development is negligible. In all cases reported here, the growth due to traditional normal-mode baroclinic instability contributes either negative or only little to the surface development up to the optimization time of two days. It takes at least four days for the flow to become fully dominated by normal-mode growth, thereby confirming that finite-time optimal perturbation growth differs in many aspects fundamentally from asymptotic normal-mode baroclinic instability.
    publisherAmerican Meteorological Society
    titleResonance in Optimal Perturbation Evolution. Part I: Two-Layer Eady Model
    typeJournal Paper
    journal volume64
    journal issue3
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3867.1
    journal fristpage673
    journal lastpage694
    treeJournal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian