YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity of Tropical Cyclone Forecasts as Revealed by Singular Vectors

    Source: Journal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 010::page 2508
    Author:
    Peng, Melinda S.
    ,
    Reynolds, Carolyn A.
    DOI: 10.1175/JAS3777.1
    Publisher: American Meteorological Society
    Abstract: Singular vector (SV) sensitivity, calculated using the adjoint model of the U.S. Navy Operation Global Atmosphere Prediction System (NOGAPS), is used to study the dynamics associated with tropical cyclone evolution. For each model-predicted tropical cyclone, SVs are constructed that optimize perturbation energy within a 20° by 20° latitude/longitude box centered on the 48-h forecast position of the cyclone. The initial SVs indicate regions where the 2-day forecast of the storm is very sensitive to changes in the analysis. Composites of the SVs for straight-moving cyclones and non-straight-moving cyclones that occurred in the Northern Hemisphere during its summer season in 2003 are examined. For both groups, the initial-time SV sensitivity exhibits a maximum within an annulus approximately 500 km from the center of the storms, in the region where the potential vorticity gradient of the vortex first changes sign. In the azimuthal direction, the composite initial-time SV maximum for the straight-moving group is located in the rear right quadrant with respect to the storm motion. The composite based on the non-straight-moving cyclones does not have a preferred quadrant in the vicinity of the storms and has larger amplitude away from the cyclones compared with the straight-moving storms, indicating more environmental influence on these storms. For both groups, the maximum initial sensitive areas are collocated with regions of flow moving toward the storm. While the initial SV maximum is located where the potential vorticity gradient changes sign, the final SV maximum is located where the potential vorticity gradient is a maximum. Examinations of individual cases demonstrate how SV sensitivity can be used to identify specific environmental influences on the storms. The relationship between the SV sensitivity and the potential vorticity is discussed. The results support the utility of SVs in applications to phenomena beyond midlatitude baroclinic systems.
    • Download: (3.314Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity of Tropical Cyclone Forecasts as Revealed by Singular Vectors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218357
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorPeng, Melinda S.
    contributor authorReynolds, Carolyn A.
    date accessioned2017-06-09T16:53:08Z
    date available2017-06-09T16:53:08Z
    date copyright2006/10/01
    date issued2006
    identifier issn0022-4928
    identifier otherams-75963.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218357
    description abstractSingular vector (SV) sensitivity, calculated using the adjoint model of the U.S. Navy Operation Global Atmosphere Prediction System (NOGAPS), is used to study the dynamics associated with tropical cyclone evolution. For each model-predicted tropical cyclone, SVs are constructed that optimize perturbation energy within a 20° by 20° latitude/longitude box centered on the 48-h forecast position of the cyclone. The initial SVs indicate regions where the 2-day forecast of the storm is very sensitive to changes in the analysis. Composites of the SVs for straight-moving cyclones and non-straight-moving cyclones that occurred in the Northern Hemisphere during its summer season in 2003 are examined. For both groups, the initial-time SV sensitivity exhibits a maximum within an annulus approximately 500 km from the center of the storms, in the region where the potential vorticity gradient of the vortex first changes sign. In the azimuthal direction, the composite initial-time SV maximum for the straight-moving group is located in the rear right quadrant with respect to the storm motion. The composite based on the non-straight-moving cyclones does not have a preferred quadrant in the vicinity of the storms and has larger amplitude away from the cyclones compared with the straight-moving storms, indicating more environmental influence on these storms. For both groups, the maximum initial sensitive areas are collocated with regions of flow moving toward the storm. While the initial SV maximum is located where the potential vorticity gradient changes sign, the final SV maximum is located where the potential vorticity gradient is a maximum. Examinations of individual cases demonstrate how SV sensitivity can be used to identify specific environmental influences on the storms. The relationship between the SV sensitivity and the potential vorticity is discussed. The results support the utility of SVs in applications to phenomena beyond midlatitude baroclinic systems.
    publisherAmerican Meteorological Society
    titleSensitivity of Tropical Cyclone Forecasts as Revealed by Singular Vectors
    typeJournal Paper
    journal volume63
    journal issue10
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3777.1
    journal fristpage2508
    journal lastpage2528
    treeJournal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian