YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Precipitation over Concave Terrain

    Source: Journal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 009::page 2269
    Author:
    Jiang, Qingfang
    DOI: 10.1175/JAS3761.1
    Publisher: American Meteorological Society
    Abstract: Many topographic barriers are comprised of a series of concave or convex ridges that modulate the intensity and distribution of precipitation over mountainous areas. In this model-based idealized study, stratiform precipitation associated with stratified moist airflow past idealized concave ridges is investigated with a focus on windward blocking, flow confluence, and the associated precipitation enhancement. It is found that flow confluence and precipitation enhancement by a concave ridge are controlled by the nondimensional ridge height M (M = Nmhm/U, where Nm is the moist buoyancy frequency, hm is the maximum ridge height, and U is the wind speed), based on which three dynamical regimes can be defined. In the linear regime (M < 0.4), a flow confluence zone is present over the upwind slope of the ridge vertex, where precipitation is significantly enhanced. The precipitation enhancement is due to the additional updraft driven by the horizontal flow convergence with a considerable contribution from lateral confluence. In the blocking regime (0.4 < M < Mc), the area and intensity of the flow confluence zone decrease with increasing mountain height due to low-level blocking. The critical nondimensional ridge height (Mc) for windward flow stagnation decreases with increasing concave angle. In the two regimes, flow confluence and precipitation enhancement are more pronounced for concave ridges with a longer cross-stream dimension or a larger concave angle. In the flow reversal regime (M > Mc), no steady state can be achieved and the precipitation enhancement at the vertex is absent. In addition, the flow confluence and precipitation enhancement upstream of a concave ridge are sensitive to the presence of a relative gap or peak at the vertex, the earth?s rotation, and the incident wind. The relevant dynamics has been examined.
    • Download: (3.387Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Precipitation over Concave Terrain

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218339
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorJiang, Qingfang
    date accessioned2017-06-09T16:53:06Z
    date available2017-06-09T16:53:06Z
    date copyright2006/09/01
    date issued2006
    identifier issn0022-4928
    identifier otherams-75947.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218339
    description abstractMany topographic barriers are comprised of a series of concave or convex ridges that modulate the intensity and distribution of precipitation over mountainous areas. In this model-based idealized study, stratiform precipitation associated with stratified moist airflow past idealized concave ridges is investigated with a focus on windward blocking, flow confluence, and the associated precipitation enhancement. It is found that flow confluence and precipitation enhancement by a concave ridge are controlled by the nondimensional ridge height M (M = Nmhm/U, where Nm is the moist buoyancy frequency, hm is the maximum ridge height, and U is the wind speed), based on which three dynamical regimes can be defined. In the linear regime (M < 0.4), a flow confluence zone is present over the upwind slope of the ridge vertex, where precipitation is significantly enhanced. The precipitation enhancement is due to the additional updraft driven by the horizontal flow convergence with a considerable contribution from lateral confluence. In the blocking regime (0.4 < M < Mc), the area and intensity of the flow confluence zone decrease with increasing mountain height due to low-level blocking. The critical nondimensional ridge height (Mc) for windward flow stagnation decreases with increasing concave angle. In the two regimes, flow confluence and precipitation enhancement are more pronounced for concave ridges with a longer cross-stream dimension or a larger concave angle. In the flow reversal regime (M > Mc), no steady state can be achieved and the precipitation enhancement at the vertex is absent. In addition, the flow confluence and precipitation enhancement upstream of a concave ridge are sensitive to the presence of a relative gap or peak at the vertex, the earth?s rotation, and the incident wind. The relevant dynamics has been examined.
    publisherAmerican Meteorological Society
    titlePrecipitation over Concave Terrain
    typeJournal Paper
    journal volume63
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3761.1
    journal fristpage2269
    journal lastpage2288
    treeJournal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian