YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Large-Eddy Simulation of Air Parcels in Stratocumulus Clouds: Time Scales and Spatial Variability

    Source: Journal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 003::page 952
    Author:
    Kogan, Yefim L.
    DOI: 10.1175/JAS3665.1
    Publisher: American Meteorological Society
    Abstract: Large ensembles of air parcel trajectories driven by the (large-eddy simulation) LES-generated velocity fields from simulations of stratocumulus clouds were analyzed, focusing on statistics of air parcel in-cloud time scales, as well as their spatial variability. In the case of a drizzling stratocumulus cloud the in-cloud residence time is 2?5 times longer than the characteristic cloud eddy turnover time. About 70% of all air parcels cycle in the cloud more than 2 times and about 50% more than 3 times, thus indicating that air cycling is an essential feature of drizzling stratocumulus cloud dynamics. The extent of cycling is different in the case of nondrizzling stratocumulus cloud, where mean in-cloud time scales are on the order of eddy turnover time. Evidently air cycling in cloud depends on boundary layer stability and flow circulation; the latter is affected by cooling of evaporating drizzle and heating by solar radiation. Results show significant inhomogeneity of in-cloud time scales, which leads to inhomogeneity in cloud microphysical parameters. The potential effects of in-cloud residence time spatial inhomogeneity on cloud microstructure are obvious and significant. Older parcels will contain larger droplets and previously processed cloud condensation nuclei (CCN). Nonadiabatic mixing between old and new parcels provides new embryos for coagulation and accelerates drizzle formation. It is hypothesized that mixing of parcels with different histories, that is, with drop size distributions at different stages of their evolution, may contribute to the drop spectrum broadening. The results also suggest a possible positive feedback mechanism between drizzle and decoupling, namely, parcels with long time trajectories will favor enhanced drizzle growth, which, in turn, will lead to stronger evaporation below cloud base followed by a stronger increase in stability of the subcloud layer and stronger decoupling; all resulting in more air parcel cycling in cloud and more drizzle, which may eventually lead to stratocumulus cloud breakup.
    • Download: (2.318Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Large-Eddy Simulation of Air Parcels in Stratocumulus Clouds: Time Scales and Spatial Variability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218232
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKogan, Yefim L.
    date accessioned2017-06-09T16:52:50Z
    date available2017-06-09T16:52:50Z
    date copyright2006/03/01
    date issued2006
    identifier issn0022-4928
    identifier otherams-75851.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218232
    description abstractLarge ensembles of air parcel trajectories driven by the (large-eddy simulation) LES-generated velocity fields from simulations of stratocumulus clouds were analyzed, focusing on statistics of air parcel in-cloud time scales, as well as their spatial variability. In the case of a drizzling stratocumulus cloud the in-cloud residence time is 2?5 times longer than the characteristic cloud eddy turnover time. About 70% of all air parcels cycle in the cloud more than 2 times and about 50% more than 3 times, thus indicating that air cycling is an essential feature of drizzling stratocumulus cloud dynamics. The extent of cycling is different in the case of nondrizzling stratocumulus cloud, where mean in-cloud time scales are on the order of eddy turnover time. Evidently air cycling in cloud depends on boundary layer stability and flow circulation; the latter is affected by cooling of evaporating drizzle and heating by solar radiation. Results show significant inhomogeneity of in-cloud time scales, which leads to inhomogeneity in cloud microphysical parameters. The potential effects of in-cloud residence time spatial inhomogeneity on cloud microstructure are obvious and significant. Older parcels will contain larger droplets and previously processed cloud condensation nuclei (CCN). Nonadiabatic mixing between old and new parcels provides new embryos for coagulation and accelerates drizzle formation. It is hypothesized that mixing of parcels with different histories, that is, with drop size distributions at different stages of their evolution, may contribute to the drop spectrum broadening. The results also suggest a possible positive feedback mechanism between drizzle and decoupling, namely, parcels with long time trajectories will favor enhanced drizzle growth, which, in turn, will lead to stronger evaporation below cloud base followed by a stronger increase in stability of the subcloud layer and stronger decoupling; all resulting in more air parcel cycling in cloud and more drizzle, which may eventually lead to stratocumulus cloud breakup.
    publisherAmerican Meteorological Society
    titleLarge-Eddy Simulation of Air Parcels in Stratocumulus Clouds: Time Scales and Spatial Variability
    typeJournal Paper
    journal volume63
    journal issue3
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3665.1
    journal fristpage952
    journal lastpage967
    treeJournal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian