YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Method to Estimate Aerosol Radiative Forcing from Spectral Optical Depths

    Source: Journal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 003::page 1082
    Author:
    Satheesh, S. K.
    ,
    Srinivasan, J.
    DOI: 10.1175/JAS3663.1
    Publisher: American Meteorological Society
    Abstract: Radiative forcing of aerosols is much more difficult to estimate than that of well-mixed gases due to the large spatial variability of aerosols and the lack of an adequate database on their radiative properties. Estimation of aerosol radiative forcing generally requires knowledge of its chemical composition, which is sparse. Ground-based sky radiance measurements [e.g., aerosol robotic network (AERONET)] can provide key parameters such as the single-scattering albedo, but in shipborne experiments over the ocean it is difficult to make sky radiance measurements and hence these experiments cannot provide parameters such as the single-scattering albedo. However, aerosol spectral optical depth data (cruise based as well as satellite retrieved) are available quite extensively over the ocean. Spectral optical depth measurements have been available since the 1970s, and spectral turbidity measurements (carried out at meteorological departments all over the world) have been available for several decades, while long-term continuous chemical composition information is not available. A new method to differentiate between scattering and absorbing aerosols is proposed here. This can be used to derive simple aerosol models that are optically equivalent and can simulate the observed aerosol optical properties and radiative fluxes, from spectral optical depth measurements. Thus, aerosol single-scattering albedo and, hence, aerosol radiative forcing can be estimated. Note that the proposed method is to estimate clear-sky aerosol radiative forcing (over regions where chemical composition data or sky radiance data are not available) and not to infer its exact chemical composition. Using several independent datasets from field experiments, it is demonstrated that the proposed method can be used to estimate aerosol radiative forcing (from spectral optical depths) with an accuracy of ±2 W m?2.
    • Download: (1.003Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Method to Estimate Aerosol Radiative Forcing from Spectral Optical Depths

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218230
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSatheesh, S. K.
    contributor authorSrinivasan, J.
    date accessioned2017-06-09T16:52:49Z
    date available2017-06-09T16:52:49Z
    date copyright2006/03/01
    date issued2006
    identifier issn0022-4928
    identifier otherams-75849.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218230
    description abstractRadiative forcing of aerosols is much more difficult to estimate than that of well-mixed gases due to the large spatial variability of aerosols and the lack of an adequate database on their radiative properties. Estimation of aerosol radiative forcing generally requires knowledge of its chemical composition, which is sparse. Ground-based sky radiance measurements [e.g., aerosol robotic network (AERONET)] can provide key parameters such as the single-scattering albedo, but in shipborne experiments over the ocean it is difficult to make sky radiance measurements and hence these experiments cannot provide parameters such as the single-scattering albedo. However, aerosol spectral optical depth data (cruise based as well as satellite retrieved) are available quite extensively over the ocean. Spectral optical depth measurements have been available since the 1970s, and spectral turbidity measurements (carried out at meteorological departments all over the world) have been available for several decades, while long-term continuous chemical composition information is not available. A new method to differentiate between scattering and absorbing aerosols is proposed here. This can be used to derive simple aerosol models that are optically equivalent and can simulate the observed aerosol optical properties and radiative fluxes, from spectral optical depth measurements. Thus, aerosol single-scattering albedo and, hence, aerosol radiative forcing can be estimated. Note that the proposed method is to estimate clear-sky aerosol radiative forcing (over regions where chemical composition data or sky radiance data are not available) and not to infer its exact chemical composition. Using several independent datasets from field experiments, it is demonstrated that the proposed method can be used to estimate aerosol radiative forcing (from spectral optical depths) with an accuracy of ±2 W m?2.
    publisherAmerican Meteorological Society
    titleA Method to Estimate Aerosol Radiative Forcing from Spectral Optical Depths
    typeJournal Paper
    journal volume63
    journal issue3
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3663.1
    journal fristpage1082
    journal lastpage1092
    treeJournal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian