YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity Studies of the Importance of Dust Ice Nuclei for the Indirect Aerosol Effect on Stratiform Mixed-Phase Clouds

    Source: Journal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 003::page 968
    Author:
    Lohmann, U.
    ,
    Diehl, K.
    DOI: 10.1175/JAS3662.1
    Publisher: American Meteorological Society
    Abstract: New parameterizations of contact freezing and immersion freezing in stratiform mixed-phase clouds (with temperatures between 0° and ?35°C) for black carbon and mineral dust assumed to be composed of either kaolinite (simulation KAO) or montmorillonite (simulation MON) are introduced into the ECHAM4 general circulation model. The effectiveness of black carbon and dust as ice nuclei as a function of temperature is parameterized from a compilation of laboratory studies. This is the first time that freezing parameterizations take the chemical composition of ice nuclei into account. The rather subtle differences between these sensitivity simulations in the present-day climate have significant implications for the anthropogenic indirect aerosol effect. The decrease in net radiation in these sensitivity simulations at the top of the atmosphere varies from 1 ± 0.3 to 2.1 ± 0.1 W m?2 depending on whether dust is assumed to be composed of kaolinite or montmorillonite. In simulation KAO, black carbon has a higher relevancy as an ice nucleus than in simulation MON, because kaolinite is not freezing as effectively as montmorillonite. In simulation KAO, the addition of anthropogenic aerosols results in a larger ice water path, a slightly higher precipitation rate, and a reduced total cloud cover. On the contrary, in simulation MON the increase in ice water path is much smaller and globally the decrease in precipitation is dominated by the reduction in warm-phase precipitation due to the indirect cloud lifetime effect.
    • Download: (1.626Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity Studies of the Importance of Dust Ice Nuclei for the Indirect Aerosol Effect on Stratiform Mixed-Phase Clouds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218229
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorLohmann, U.
    contributor authorDiehl, K.
    date accessioned2017-06-09T16:52:49Z
    date available2017-06-09T16:52:49Z
    date copyright2006/03/01
    date issued2006
    identifier issn0022-4928
    identifier otherams-75848.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218229
    description abstractNew parameterizations of contact freezing and immersion freezing in stratiform mixed-phase clouds (with temperatures between 0° and ?35°C) for black carbon and mineral dust assumed to be composed of either kaolinite (simulation KAO) or montmorillonite (simulation MON) are introduced into the ECHAM4 general circulation model. The effectiveness of black carbon and dust as ice nuclei as a function of temperature is parameterized from a compilation of laboratory studies. This is the first time that freezing parameterizations take the chemical composition of ice nuclei into account. The rather subtle differences between these sensitivity simulations in the present-day climate have significant implications for the anthropogenic indirect aerosol effect. The decrease in net radiation in these sensitivity simulations at the top of the atmosphere varies from 1 ± 0.3 to 2.1 ± 0.1 W m?2 depending on whether dust is assumed to be composed of kaolinite or montmorillonite. In simulation KAO, black carbon has a higher relevancy as an ice nucleus than in simulation MON, because kaolinite is not freezing as effectively as montmorillonite. In simulation KAO, the addition of anthropogenic aerosols results in a larger ice water path, a slightly higher precipitation rate, and a reduced total cloud cover. On the contrary, in simulation MON the increase in ice water path is much smaller and globally the decrease in precipitation is dominated by the reduction in warm-phase precipitation due to the indirect cloud lifetime effect.
    publisherAmerican Meteorological Society
    titleSensitivity Studies of the Importance of Dust Ice Nuclei for the Indirect Aerosol Effect on Stratiform Mixed-Phase Clouds
    typeJournal Paper
    journal volume63
    journal issue3
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3662.1
    journal fristpage968
    journal lastpage982
    treeJournal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian