YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Explicit Simulation of Aerosol Physics in a Cloud-Resolving Model: Aerosol Transport and Processing in the Free Troposphere

    Source: Journal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 002::page 682
    Author:
    Ekman, Annica M. L.
    ,
    Wang, Chien
    ,
    Ström, Johan
    ,
    Krejci, Radovan
    DOI: 10.1175/JAS3645.1
    Publisher: American Meteorological Society
    Abstract: Large concentrations of small aerosols have been previously observed in the vicinity of anvils of convective clouds. A 3D cloud-resolving model (CRM) including an explicit size-resolving aerosol module has been used to examine the origin of these aerosols. Five different types of aerosols are considered: nucleation mode sulfate aerosols (here defined by 0 ≤ d ≤5.84 nm), Aitken mode sulfate aerosols (here defined by 5.84 nm ≤ d ≤ 31.0 nm), accumulation mode sulfate aerosols (here defined by d ≥ 31.0 nm), mixed aerosols, and black carbon aerosols. The model results suggest that approximately 10% of the initial boundary layer number concentration of Aitken mode aerosols and black carbon aerosols are present at the top of the convective cloud as the cloud reaches its decaying state. The simulated average number concentration of Aitken mode aerosols in the cloud anvil (?1.6 ? 104 cm?3) is in the same order of magnitude as observations. Thus, the model results strongly suggest that vertical convective transport, particularly during the active period of the convection, is responsible for a major part of the appearance of high concentrations of small aerosols (corresponding to the Aitken mode in the model) observed in the vicinity of cloud anvils. There is some formation of new aerosols within the cloud, but the formation is small. Nucleation mode aerosols are also efficiently scavenged through impaction scavenging by precipitation. Accumulation mode and mixed mode aerosols are efficiently scavenged through nucleation scavenging and their concentrations in the cloud anvil are either very low (mixed mode) or practically zero (accumulation mode). In addition to the 3D CRM, a box model, including important features of the aerosol module of the 3D model, has been used to study the formation of new aerosols after the cloud has evaporated. The possibility of these aerosols to grow to suitable cloud condensation or ice nuclei size is also examined. Concentrations of nucleation mode aerosols up to 3 ? 104 cm?3 are obtained. The box model simulations thus suggest that new particle formation is a substantial source of small aerosols in the upper troposphere during and after the dissipation of the convective cloud. Nucleation mode and Aitken mode aerosols grow due to coagulation and condensation of H2SO4 on the aerosols, but the growth rate is low. Provided that there is enough OH available to oxidize SO2, parts of the aerosol population (?400 cm?3) can reach the accumulation mode size bin of the box model after 46 h of simulation.
    • Download: (1.205Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Explicit Simulation of Aerosol Physics in a Cloud-Resolving Model: Aerosol Transport and Processing in the Free Troposphere

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218212
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorEkman, Annica M. L.
    contributor authorWang, Chien
    contributor authorStröm, Johan
    contributor authorKrejci, Radovan
    date accessioned2017-06-09T16:52:47Z
    date available2017-06-09T16:52:47Z
    date copyright2006/02/01
    date issued2006
    identifier issn0022-4928
    identifier otherams-75832.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218212
    description abstractLarge concentrations of small aerosols have been previously observed in the vicinity of anvils of convective clouds. A 3D cloud-resolving model (CRM) including an explicit size-resolving aerosol module has been used to examine the origin of these aerosols. Five different types of aerosols are considered: nucleation mode sulfate aerosols (here defined by 0 ≤ d ≤5.84 nm), Aitken mode sulfate aerosols (here defined by 5.84 nm ≤ d ≤ 31.0 nm), accumulation mode sulfate aerosols (here defined by d ≥ 31.0 nm), mixed aerosols, and black carbon aerosols. The model results suggest that approximately 10% of the initial boundary layer number concentration of Aitken mode aerosols and black carbon aerosols are present at the top of the convective cloud as the cloud reaches its decaying state. The simulated average number concentration of Aitken mode aerosols in the cloud anvil (?1.6 ? 104 cm?3) is in the same order of magnitude as observations. Thus, the model results strongly suggest that vertical convective transport, particularly during the active period of the convection, is responsible for a major part of the appearance of high concentrations of small aerosols (corresponding to the Aitken mode in the model) observed in the vicinity of cloud anvils. There is some formation of new aerosols within the cloud, but the formation is small. Nucleation mode aerosols are also efficiently scavenged through impaction scavenging by precipitation. Accumulation mode and mixed mode aerosols are efficiently scavenged through nucleation scavenging and their concentrations in the cloud anvil are either very low (mixed mode) or practically zero (accumulation mode). In addition to the 3D CRM, a box model, including important features of the aerosol module of the 3D model, has been used to study the formation of new aerosols after the cloud has evaporated. The possibility of these aerosols to grow to suitable cloud condensation or ice nuclei size is also examined. Concentrations of nucleation mode aerosols up to 3 ? 104 cm?3 are obtained. The box model simulations thus suggest that new particle formation is a substantial source of small aerosols in the upper troposphere during and after the dissipation of the convective cloud. Nucleation mode and Aitken mode aerosols grow due to coagulation and condensation of H2SO4 on the aerosols, but the growth rate is low. Provided that there is enough OH available to oxidize SO2, parts of the aerosol population (?400 cm?3) can reach the accumulation mode size bin of the box model after 46 h of simulation.
    publisherAmerican Meteorological Society
    titleExplicit Simulation of Aerosol Physics in a Cloud-Resolving Model: Aerosol Transport and Processing in the Free Troposphere
    typeJournal Paper
    journal volume63
    journal issue2
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3645.1
    journal fristpage682
    journal lastpage696
    treeJournal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian