YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Low-Order Stochastic Mode Reduction for a Prototype Atmospheric GCM

    Source: Journal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 002::page 457
    Author:
    Franzke, Christian
    ,
    Majda, Andrew J.
    DOI: 10.1175/JAS3633.1
    Publisher: American Meteorological Society
    Abstract: This study applies a systematic strategy for stochastic modeling of atmospheric low-frequency variability to a three-layer quasigeostrophic model. This model climate has reasonable approximations of the North Atlantic Oscillation (NAO) and Pacific?North America (PNA) patterns. The systematic strategy consists first of the identification of slowly evolving climate modes and faster evolving nonclimate modes by use of an empirical orthogonal function (EOF) decomposition in the total energy metric. The low-order stochastic climate model predicts the evolution of these climate modes a priori without any regression fitting of the resolved modes. The systematic stochastic mode reduction strategy determines all correction terms and noises with minimal regression fitting of the variances and correlation times of the unresolved modes. These correction terms and noises account for the neglected interactions between the resolved climate modes and the unresolved nonclimate modes. Low-order stochastic models with 10 or less resolved modes capture the statistics of the original model very well, including the variances and temporal correlations with high pattern correlations of the transient eddy fluxes. A budget analysis establishes that the low-order stochastic models are highly nonlinear with significant contributions from both additive and multiplicative noise. This is in contrast to previous stochastic modeling studies. These studies a priori assume a linear model with additive noise and regression fit the resolved modes. The multiplicative noise comes from the advection of the resolved modes by the unresolved modes. The most straightforward low-order stochastic climate models experience climate drift that stems from the bare truncation dynamics. Even though the geographic correlation of the transient eddy fluxes is high, they are underestimated by a factor of about 2 in the a priori procedure and thus cannot completely overcome the large climate drift in the bare truncation. Also, variants of the reduced stochastic modeling procedure that experience no climate drift with good predictions of both the variances and time correlations are discussed. These reduced models without climate drift are developed by slowing down the dynamics of the bare truncation compared with the interactions with the unresolved modes and yield a minimal two-parameter regression fitting strategy for the climate modes. This study points to the need for better optimal basis functions that optimally capture the essential slow dynamics of the system to obtain further improvements for the reduced stochastic modeling procedure.
    • Download: (2.470Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Low-Order Stochastic Mode Reduction for a Prototype Atmospheric GCM

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218198
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorFranzke, Christian
    contributor authorMajda, Andrew J.
    date accessioned2017-06-09T16:52:45Z
    date available2017-06-09T16:52:45Z
    date copyright2006/02/01
    date issued2006
    identifier issn0022-4928
    identifier otherams-75820.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218198
    description abstractThis study applies a systematic strategy for stochastic modeling of atmospheric low-frequency variability to a three-layer quasigeostrophic model. This model climate has reasonable approximations of the North Atlantic Oscillation (NAO) and Pacific?North America (PNA) patterns. The systematic strategy consists first of the identification of slowly evolving climate modes and faster evolving nonclimate modes by use of an empirical orthogonal function (EOF) decomposition in the total energy metric. The low-order stochastic climate model predicts the evolution of these climate modes a priori without any regression fitting of the resolved modes. The systematic stochastic mode reduction strategy determines all correction terms and noises with minimal regression fitting of the variances and correlation times of the unresolved modes. These correction terms and noises account for the neglected interactions between the resolved climate modes and the unresolved nonclimate modes. Low-order stochastic models with 10 or less resolved modes capture the statistics of the original model very well, including the variances and temporal correlations with high pattern correlations of the transient eddy fluxes. A budget analysis establishes that the low-order stochastic models are highly nonlinear with significant contributions from both additive and multiplicative noise. This is in contrast to previous stochastic modeling studies. These studies a priori assume a linear model with additive noise and regression fit the resolved modes. The multiplicative noise comes from the advection of the resolved modes by the unresolved modes. The most straightforward low-order stochastic climate models experience climate drift that stems from the bare truncation dynamics. Even though the geographic correlation of the transient eddy fluxes is high, they are underestimated by a factor of about 2 in the a priori procedure and thus cannot completely overcome the large climate drift in the bare truncation. Also, variants of the reduced stochastic modeling procedure that experience no climate drift with good predictions of both the variances and time correlations are discussed. These reduced models without climate drift are developed by slowing down the dynamics of the bare truncation compared with the interactions with the unresolved modes and yield a minimal two-parameter regression fitting strategy for the climate modes. This study points to the need for better optimal basis functions that optimally capture the essential slow dynamics of the system to obtain further improvements for the reduced stochastic modeling procedure.
    publisherAmerican Meteorological Society
    titleLow-Order Stochastic Mode Reduction for a Prototype Atmospheric GCM
    typeJournal Paper
    journal volume63
    journal issue2
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3633.1
    journal fristpage457
    journal lastpage479
    treeJournal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian