YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Supplying Local Microphysics Parameterizations with Information about Subgrid Variability: Latin Hypercube Sampling

    Source: Journal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 011::page 4010
    Author:
    Larson, Vincent E.
    ,
    Golaz, Jean-Christophe
    ,
    Jiang, Hongli
    ,
    Cotton, William R.
    DOI: 10.1175/JAS3624.1
    Publisher: American Meteorological Society
    Abstract: One problem in computing cloud microphysical processes in coarse-resolution numerical models is that many microphysical processes are nonlinear and small in scale. Consequently, there are inaccuracies if microphysics parameterizations are forced with grid box averages of model fields, such as liquid water content. Rather, the model needs to determine information about subgrid variability and input it into the microphysics parameterization. One possible solution is to assume the shape of the family of probability density functions (PDFs) associated with a grid box and sample it using the Monte Carlo method. In this method, the microphysics subroutine is called repeatedly, once with each sample point. In this way, the Monte Carlo method acts as an interface between the host model?s dynamics and the microphysical parameterization. This avoids the need to rewrite the microphysics subroutines. A difficulty with the Monte Carlo method is that it introduces into the simulation statistical noise or variance, associated with the finite sample size. If the family of PDFs is tractable, one can sample solely from cloud, thereby improving estimates of in-cloud processes. If one wishes to mitigate the noise further, one needs a method for reduction of variance. One such method is Latin hypercube sampling, which reduces noise by spreading out the sample points in a quasi-random fashion. This paper formulates a sampling interface based on the Latin hypercube method. The associated family of PDFs is assumed to be a joint normal/lognormal (i.e., Gaussian/lognormal) mixture. This method of variance reduction has a couple of advantages. First, the method is general: the same interface can be used with a wide variety of microphysical parameterizations for various processes. Second, the method is flexible: one can arbitrarily specify the number of hydrometeor categories and the number of calls to the microphysics parameterization per grid box per time step. This paper performs a preliminary test of Latin hypercube sampling. As a prototypical microphysical formula, this paper uses the Kessler autoconversion formula. The PDFs that are sampled are extracted diagnostically from large-eddy simulations (LES). Both stratocumulus and cumulus boundary layer cases are tested. In this diagnostic test, the Latin hypercube can produce somewhat less noisy time-averaged estimates of Kessler autoconversion than a traditional Monte Carlo estimate, with no additional calls to the microphysics parameterization. However, the instantaneous estimates are no less noisy. This paper leaves unanswered the question of whether the Latin hypercube method will work well in a prognostic, interactive cloud model, but this question will be addressed in a future manuscript.
    • Download: (996.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Supplying Local Microphysics Parameterizations with Information about Subgrid Variability: Latin Hypercube Sampling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218188
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorLarson, Vincent E.
    contributor authorGolaz, Jean-Christophe
    contributor authorJiang, Hongli
    contributor authorCotton, William R.
    date accessioned2017-06-09T16:52:41Z
    date available2017-06-09T16:52:41Z
    date copyright2005/11/01
    date issued2005
    identifier issn0022-4928
    identifier otherams-75811.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218188
    description abstractOne problem in computing cloud microphysical processes in coarse-resolution numerical models is that many microphysical processes are nonlinear and small in scale. Consequently, there are inaccuracies if microphysics parameterizations are forced with grid box averages of model fields, such as liquid water content. Rather, the model needs to determine information about subgrid variability and input it into the microphysics parameterization. One possible solution is to assume the shape of the family of probability density functions (PDFs) associated with a grid box and sample it using the Monte Carlo method. In this method, the microphysics subroutine is called repeatedly, once with each sample point. In this way, the Monte Carlo method acts as an interface between the host model?s dynamics and the microphysical parameterization. This avoids the need to rewrite the microphysics subroutines. A difficulty with the Monte Carlo method is that it introduces into the simulation statistical noise or variance, associated with the finite sample size. If the family of PDFs is tractable, one can sample solely from cloud, thereby improving estimates of in-cloud processes. If one wishes to mitigate the noise further, one needs a method for reduction of variance. One such method is Latin hypercube sampling, which reduces noise by spreading out the sample points in a quasi-random fashion. This paper formulates a sampling interface based on the Latin hypercube method. The associated family of PDFs is assumed to be a joint normal/lognormal (i.e., Gaussian/lognormal) mixture. This method of variance reduction has a couple of advantages. First, the method is general: the same interface can be used with a wide variety of microphysical parameterizations for various processes. Second, the method is flexible: one can arbitrarily specify the number of hydrometeor categories and the number of calls to the microphysics parameterization per grid box per time step. This paper performs a preliminary test of Latin hypercube sampling. As a prototypical microphysical formula, this paper uses the Kessler autoconversion formula. The PDFs that are sampled are extracted diagnostically from large-eddy simulations (LES). Both stratocumulus and cumulus boundary layer cases are tested. In this diagnostic test, the Latin hypercube can produce somewhat less noisy time-averaged estimates of Kessler autoconversion than a traditional Monte Carlo estimate, with no additional calls to the microphysics parameterization. However, the instantaneous estimates are no less noisy. This paper leaves unanswered the question of whether the Latin hypercube method will work well in a prognostic, interactive cloud model, but this question will be addressed in a future manuscript.
    publisherAmerican Meteorological Society
    titleSupplying Local Microphysics Parameterizations with Information about Subgrid Variability: Latin Hypercube Sampling
    typeJournal Paper
    journal volume62
    journal issue11
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3624.1
    journal fristpage4010
    journal lastpage4026
    treeJournal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian