contributor author | Xue, Huiwen | |
contributor author | Moyle, Alfred M. | |
contributor author | Magee, Nathan | |
contributor author | Harrington, Jerry Y. | |
contributor author | Lamb, Dennis | |
date accessioned | 2017-06-09T16:52:41Z | |
date available | 2017-06-09T16:52:41Z | |
date copyright | 2005/12/01 | |
date issued | 2005 | |
identifier issn | 0022-4928 | |
identifier other | ams-75810.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4218187 | |
description abstract | Experiments were conducted with an electrodynamic levitation system to study the kinetics of droplet evaporation under chemically rich conditions. Single solution droplets of known composition (HNO3/H2O or H2SO4/HNO3/H2O) were introduced into an environmentally controlled cubic levitation cell. The gaseous environment was set intentionally out of equilibrium with the droplet properties, thus permitting the HNO3 mass accommodation coefficient to be determined. Measurements were performed at room temperature and various pressures (200?1000 hPa). Droplet sizes (initial radii in the range 12?26 ?m) were measured versus time to high precision (±0.03 ?m) via Mie scattering and compared with sizes computed by different models for mass and heat transfer in the transition regime. The best agreement between the theoretical calculations and experimental results was obtained for an HNO3 mass accommodation coefficient of 0.11 ± 0.03 at atmospheric pressure, 0.17 ± 0.05 at 500 hPa, and 0.33 ± 0.08 at 200 hPa. The determination of the mass accommodation coefficient was not sensitive to the transport model used. The results show that droplet evaporation is strongly limited by HNO3 and occurs in two stages, one characterized by rapid H2O mass transfer and the other by HNO3 mass transfer. The presence of a nonvolatile solute (SO2?4) affects the activities of the volatile components (HNO3 and H2O) and prevents complete evaporation of the solution droplets. These findings validate recent attempts to include the effects of soluble trace gases in cloud models, as long as suitable model parameters are used. | |
publisher | American Meteorological Society | |
title | Experimental Studies of Droplet Evaporation Kinetics: Validation of Models for Binary and Ternary Aqueous Solutions | |
type | Journal Paper | |
journal volume | 62 | |
journal issue | 12 | |
journal title | Journal of the Atmospheric Sciences | |
identifier doi | 10.1175/JAS3623.1 | |
journal fristpage | 4310 | |
journal lastpage | 4326 | |
tree | Journal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 012 | |
contenttype | Fulltext | |