YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget

    Source: Journal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 001::page 43
    Author:
    Braun, Scott A.
    DOI: 10.1175/JAS3609.1
    Publisher: American Meteorological Society
    Abstract: The fifth-generation Pennsylvania State University?National Center for Atmospheric Research (PSU?NCAR) Mesoscale Model (MM5) is used to simulate Hurricane Bonnie at high resolution (2-km spacing) in order to examine budgets of water vapor, cloud condensate, and precipitation. Virtually all budget terms are derived directly from the model (except for the effects of storm motion). The water vapor budget reveals that a majority of the condensation in the eyewall occurs in convective hot towers, while outside of the eyewall most of the condensation occurs in weaker updrafts, indicative of a larger role of stratiform precipitation processes. The ocean source of water vapor in the eyewall region is only a very small fraction of that transported inward in the boundary layer inflow or that condensed in the updrafts. In contrast, in the outer regions, the ocean vapor source is larger owing to the larger area, counters the drying effect of low-level subsidence, and enhances the moisture transported in toward the eyewall. In this mature storm, cloud condensate is consumed as rapidly as it is produced. Cloud water peaks at the top of the boundary layer and within the melting layer, where cooling from melting enhances condensation. Unlike in squall lines, in the hurricane, very little condensate produced in the eyewall convection is transported outward into the surrounding precipitation area. Most of the mass ejected outward is likely in the form of small snow particles that seed the outer regions and enhance in situ stratiform precipitation development through additional growth by vapor deposition and aggregation. This study also examines artificial source terms for cloud and precipitation mass associated with setting to zero negative mixing ratios that arise from numerical advection errors. Although small at any given point and time, the cumulative effect of these terms contributes an amount of mass equivalent to 13% of the total condensation and 15%?20% of the precipitation. Thus, these terms must be accounted for to balance the model budgets, and the results suggest the need for improved model numerics.
    • Download: (2.304Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218171
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBraun, Scott A.
    date accessioned2017-06-09T16:52:39Z
    date available2017-06-09T16:52:39Z
    date copyright2006/01/01
    date issued2006
    identifier issn0022-4928
    identifier otherams-75796.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218171
    description abstractThe fifth-generation Pennsylvania State University?National Center for Atmospheric Research (PSU?NCAR) Mesoscale Model (MM5) is used to simulate Hurricane Bonnie at high resolution (2-km spacing) in order to examine budgets of water vapor, cloud condensate, and precipitation. Virtually all budget terms are derived directly from the model (except for the effects of storm motion). The water vapor budget reveals that a majority of the condensation in the eyewall occurs in convective hot towers, while outside of the eyewall most of the condensation occurs in weaker updrafts, indicative of a larger role of stratiform precipitation processes. The ocean source of water vapor in the eyewall region is only a very small fraction of that transported inward in the boundary layer inflow or that condensed in the updrafts. In contrast, in the outer regions, the ocean vapor source is larger owing to the larger area, counters the drying effect of low-level subsidence, and enhances the moisture transported in toward the eyewall. In this mature storm, cloud condensate is consumed as rapidly as it is produced. Cloud water peaks at the top of the boundary layer and within the melting layer, where cooling from melting enhances condensation. Unlike in squall lines, in the hurricane, very little condensate produced in the eyewall convection is transported outward into the surrounding precipitation area. Most of the mass ejected outward is likely in the form of small snow particles that seed the outer regions and enhance in situ stratiform precipitation development through additional growth by vapor deposition and aggregation. This study also examines artificial source terms for cloud and precipitation mass associated with setting to zero negative mixing ratios that arise from numerical advection errors. Although small at any given point and time, the cumulative effect of these terms contributes an amount of mass equivalent to 13% of the total condensation and 15%?20% of the precipitation. Thus, these terms must be accounted for to balance the model budgets, and the results suggest the need for improved model numerics.
    publisherAmerican Meteorological Society
    titleHigh-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget
    typeJournal Paper
    journal volume63
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3609.1
    journal fristpage43
    journal lastpage64
    treeJournal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian