YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation of Hurricane Bonnie (1998). Part II: Sensitivity to Varying Cloud Microphysical Processes

    Source: Journal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 001::page 109
    Author:
    Zhu, Tong
    ,
    Zhang, Da-Lin
    DOI: 10.1175/JAS3599.1
    Publisher: American Meteorological Society
    Abstract: In this study, the effects of various cloud microphysics processes on the hurricane intensity, precipitation, and inner-core structures are examined with a series of 5-day explicit simulations of Hurricane Bonnie (1998), using the results presented in Part I as a control run. It is found that varying cloud microphysics processes produces little sensitivity in hurricane track, except for very weak and shallow storms, but it produces pronounced departures in hurricane intensity and inner-core structures. Specifically, removing ice microphysics produces the weakest (15-hPa underdeepening) and shallowest storm with widespread cloud water but little rainwater in the upper troposphere. Removing graupel from the control run generates a weaker hurricane with a wider area of precipitation and more cloud coverage in the eyewall due to the enhanced horizontal advection of hydrometeors relative to the vertical fallouts (or increased water loading). Turning off the evaporation of cloud water and rainwater leads to the most rapid deepening storm (i.e., 90 hPa in 48 h) with the smallest radius but a wider eyewall and the strongest eyewall updrafts. The second strongest storm, but with the most amount of rainfall, is obtained when the melting effect is ignored. It is found that the cooling due to melting is more pronounced in the eyewall where more frozen hydrometeors, especially graupel, are available, whereas the evaporative cooling occurs more markedly when the storm environment is more unsaturated. It is shown that stronger storms tend to show more compact eyewalls with heavier precipitation and more symmetric structures in the warm-cored eye and in the eyewall. It is also shown that although the eyewall replacement scenarios occur as the simulated storms move into weak-sheared environments, the associated inner-core structural changes, timing, and location differ markedly, depending on the hurricane intensity. That is, the eyewall convection in weak storms tends to diminish shortly after being encircled by an outer rainband, whereas both the cloud band and the inner eyewall in strong storms tend to merge to form a new eyewall with a larger radius. The results indicate the importance of the Bergeron processes, including the growth and rapid fallout of graupel in the eyewall, and the latent heat of fusion in determining the intensity and inner-core structures of hurricanes, and the vulnerability of weak storms to the influence of large-scale sheared flows in terms of track, inner-core structures, and intensity changes.
    • Download: (2.680Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation of Hurricane Bonnie (1998). Part II: Sensitivity to Varying Cloud Microphysical Processes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218160
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorZhu, Tong
    contributor authorZhang, Da-Lin
    date accessioned2017-06-09T16:52:37Z
    date available2017-06-09T16:52:37Z
    date copyright2006/01/01
    date issued2006
    identifier issn0022-4928
    identifier otherams-75786.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218160
    description abstractIn this study, the effects of various cloud microphysics processes on the hurricane intensity, precipitation, and inner-core structures are examined with a series of 5-day explicit simulations of Hurricane Bonnie (1998), using the results presented in Part I as a control run. It is found that varying cloud microphysics processes produces little sensitivity in hurricane track, except for very weak and shallow storms, but it produces pronounced departures in hurricane intensity and inner-core structures. Specifically, removing ice microphysics produces the weakest (15-hPa underdeepening) and shallowest storm with widespread cloud water but little rainwater in the upper troposphere. Removing graupel from the control run generates a weaker hurricane with a wider area of precipitation and more cloud coverage in the eyewall due to the enhanced horizontal advection of hydrometeors relative to the vertical fallouts (or increased water loading). Turning off the evaporation of cloud water and rainwater leads to the most rapid deepening storm (i.e., 90 hPa in 48 h) with the smallest radius but a wider eyewall and the strongest eyewall updrafts. The second strongest storm, but with the most amount of rainfall, is obtained when the melting effect is ignored. It is found that the cooling due to melting is more pronounced in the eyewall where more frozen hydrometeors, especially graupel, are available, whereas the evaporative cooling occurs more markedly when the storm environment is more unsaturated. It is shown that stronger storms tend to show more compact eyewalls with heavier precipitation and more symmetric structures in the warm-cored eye and in the eyewall. It is also shown that although the eyewall replacement scenarios occur as the simulated storms move into weak-sheared environments, the associated inner-core structural changes, timing, and location differ markedly, depending on the hurricane intensity. That is, the eyewall convection in weak storms tends to diminish shortly after being encircled by an outer rainband, whereas both the cloud band and the inner eyewall in strong storms tend to merge to form a new eyewall with a larger radius. The results indicate the importance of the Bergeron processes, including the growth and rapid fallout of graupel in the eyewall, and the latent heat of fusion in determining the intensity and inner-core structures of hurricanes, and the vulnerability of weak storms to the influence of large-scale sheared flows in terms of track, inner-core structures, and intensity changes.
    publisherAmerican Meteorological Society
    titleNumerical Simulation of Hurricane Bonnie (1998). Part II: Sensitivity to Varying Cloud Microphysical Processes
    typeJournal Paper
    journal volume63
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3599.1
    journal fristpage109
    journal lastpage126
    treeJournal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian