YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Low-Level Mesocyclonic Concentration by Nonaxisymmetric Transport. Part II: Vorticity Dynamics

    Source: Journal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 004::page 1134
    Author:
    Gaudet, Brian J.
    ,
    Cotton, William R.
    ,
    Montgomery, Michael T.
    DOI: 10.1175/JAS3579.1
    Publisher: American Meteorological Society
    Abstract: An idealized supercell simulation using the Regional Atmospheric Modeling System (RAMS) produced an elongated low-level mesocyclone that subsequently collapsed into a concentrated vortex. Though vorticity continually increased in the mesocyclone due to horizontal convergence, the collapse phase was additionally characterized by rapidly decreasing pressure, closed streamlines, and the creation of a compact vorticity center isolated from the remaining vorticity. It was shown in Part I of this study that the concentration phase was not initiated by an increase in horizontal convergence, suggesting that the proximate cause resided elsewhere. In this study, the vortex concentration in Part I is examined from a vorticity dynamics perspective. It is shown that concentration occurs when inward radial velocity and vertical vorticity become more spatially correlated in the region surrounding the nascent vortex. It is also emphasized that the anisotropy of the horizontal convergence, which is nearly plane-convergent and of comparable magnitude to the mesocyclonic vorticity, is critical to an understanding of the process. The resultant evolution is intermediate between a state of purely two-dimensional nondivergent dynamics and one in which plane convergence confines vorticity to its axis of dilatation. This intermediate state produces a concentrated vortex more rapidly than either end state. The unsteady nature of the initial vorticity band also serves to increase the circulation and wind speed amplification of the final vortex. It is shown how conceptual models in the fluid dynamics literature can be applied to predicting the time and length scales of tornadic mesocyclone evolution.
    • Download: (1.233Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Low-Level Mesocyclonic Concentration by Nonaxisymmetric Transport. Part II: Vorticity Dynamics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218138
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorGaudet, Brian J.
    contributor authorCotton, William R.
    contributor authorMontgomery, Michael T.
    date accessioned2017-06-09T16:52:34Z
    date available2017-06-09T16:52:34Z
    date copyright2006/04/01
    date issued2006
    identifier issn0022-4928
    identifier otherams-75766.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218138
    description abstractAn idealized supercell simulation using the Regional Atmospheric Modeling System (RAMS) produced an elongated low-level mesocyclone that subsequently collapsed into a concentrated vortex. Though vorticity continually increased in the mesocyclone due to horizontal convergence, the collapse phase was additionally characterized by rapidly decreasing pressure, closed streamlines, and the creation of a compact vorticity center isolated from the remaining vorticity. It was shown in Part I of this study that the concentration phase was not initiated by an increase in horizontal convergence, suggesting that the proximate cause resided elsewhere. In this study, the vortex concentration in Part I is examined from a vorticity dynamics perspective. It is shown that concentration occurs when inward radial velocity and vertical vorticity become more spatially correlated in the region surrounding the nascent vortex. It is also emphasized that the anisotropy of the horizontal convergence, which is nearly plane-convergent and of comparable magnitude to the mesocyclonic vorticity, is critical to an understanding of the process. The resultant evolution is intermediate between a state of purely two-dimensional nondivergent dynamics and one in which plane convergence confines vorticity to its axis of dilatation. This intermediate state produces a concentrated vortex more rapidly than either end state. The unsteady nature of the initial vorticity band also serves to increase the circulation and wind speed amplification of the final vortex. It is shown how conceptual models in the fluid dynamics literature can be applied to predicting the time and length scales of tornadic mesocyclone evolution.
    publisherAmerican Meteorological Society
    titleLow-Level Mesocyclonic Concentration by Nonaxisymmetric Transport. Part II: Vorticity Dynamics
    typeJournal Paper
    journal volume63
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3579.1
    journal fristpage1134
    journal lastpage1150
    treeJournal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian