YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Atmospheric Factors Governing Banded Orographic Convection

    Source: Journal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 010::page 3758
    Author:
    Kirshbaum, Daniel J.
    ,
    Durran, Dale R.
    DOI: 10.1175/JAS3568.1
    Publisher: American Meteorological Society
    Abstract: The three-dimensional structure of shallow orographic convection is investigated through simulations performed with a cloud-resolving numerical model. In moist flows that overcome a given topographic barrier to form statically unstable cap clouds, the organization of the convection depends on both the atmospheric structure and the mechanism by which the convection is initiated. Convection initiated by background thermal fluctuations embedded in the flow over a smooth mountain (without any small-scale topographic features) tends to be cellular and disorganized except that shear-parallel bands may form in flows with strong unidirectional vertical shear. The development of well-organized bands is favored when there is weak static instability inside the cloud and when the dry air surrounding the cloud is strongly stable. These bands move with the flow and distribute their cumulative precipitation evenly over the mountain upslope. Similar shear-parallel bands also develop in flows where convection is initiated by small-scale topographic noise superimposed onto the main mountain profile, but in this case stronger circulations are also triggered that create stationary rainbands parallel to the low-level flow. This second dominant mode, which is less sensitive to the atmospheric structure and the strength of forcing, is triggered by lee waves that form over small-scale topographic bumps near the upstream edge of the main orographic cloud. Due to their stationarity, these flow-parallel bands can produce locally heavy precipitation amounts.
    • Download: (1.970Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Atmospheric Factors Governing Banded Orographic Convection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218126
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKirshbaum, Daniel J.
    contributor authorDurran, Dale R.
    date accessioned2017-06-09T16:52:33Z
    date available2017-06-09T16:52:33Z
    date copyright2005/10/01
    date issued2005
    identifier issn0022-4928
    identifier otherams-75755.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218126
    description abstractThe three-dimensional structure of shallow orographic convection is investigated through simulations performed with a cloud-resolving numerical model. In moist flows that overcome a given topographic barrier to form statically unstable cap clouds, the organization of the convection depends on both the atmospheric structure and the mechanism by which the convection is initiated. Convection initiated by background thermal fluctuations embedded in the flow over a smooth mountain (without any small-scale topographic features) tends to be cellular and disorganized except that shear-parallel bands may form in flows with strong unidirectional vertical shear. The development of well-organized bands is favored when there is weak static instability inside the cloud and when the dry air surrounding the cloud is strongly stable. These bands move with the flow and distribute their cumulative precipitation evenly over the mountain upslope. Similar shear-parallel bands also develop in flows where convection is initiated by small-scale topographic noise superimposed onto the main mountain profile, but in this case stronger circulations are also triggered that create stationary rainbands parallel to the low-level flow. This second dominant mode, which is less sensitive to the atmospheric structure and the strength of forcing, is triggered by lee waves that form over small-scale topographic bumps near the upstream edge of the main orographic cloud. Due to their stationarity, these flow-parallel bands can produce locally heavy precipitation amounts.
    publisherAmerican Meteorological Society
    titleAtmospheric Factors Governing Banded Orographic Convection
    typeJournal Paper
    journal volume62
    journal issue10
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3568.1
    journal fristpage3758
    journal lastpage3774
    treeJournal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian