YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mesoscale Modeling of Springtime Arctic Mixed-Phase Stratiform Clouds Using a New Two-Moment Bulk Microphysics Scheme

    Source: Journal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 010::page 3683
    Author:
    Morrison, H.
    ,
    Pinto, J. O.
    DOI: 10.1175/JAS3564.1
    Publisher: American Meteorological Society
    Abstract: A new two-moment bulk microphysics scheme is implemented into the polar version of the fifth-generation Pennsylvania State University?NCAR Mesoscale Model (MM5) to simulate arctic mixed-phase boundary layer stratiform clouds observed during Surface Heat Budget of the Arctic (SHEBA) First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Arctic Cloud Experiment (ACE). The microphysics scheme predicts the number concentrations and mixing ratios of four hydrometeor species (cloud droplets, small ice, rain, snow) and includes detailed treatments of droplet activation and ice nucleation from a prescribed distribution of aerosol obtained from observations. The model is able to reproduce many features of the observed mixed-phase cloud, including a near-adiabatic liquid water content profile located near the top of a well-mixed boundary layer, droplet number concentrations of about 200?250 cm?3 that were distributed fairly uniformly through the depth of the cloud, and continuous light snow falling from the cloud base to the surface. The impacts of droplet and ice nucleation, radiative transfer, turbulence, large-scale dynamics, and vertical resolution on the simulated mixed-phase stratiform cloud are examined. The cloud layer is largely self-maintained through strong cloud-top radiative cooling that exceeds 40 K day?1. It persists through extended periods of downward large-scale motion that tend to thin the layer and reduce water contents. Droplet activation rates are highest near cloud base, associated with subgrid vertical motion that is diagnosed from the predicted turbulence kinetic energy. A sensitivity test neglecting subgrid vertical velocity produces only weak activation and small droplet number concentrations (<90 cm?3). These results highlight the importance of parameterizing the impact of subgrid vertical velocity to generate local supersaturation for aerosol-droplet closure. The primary ice nucleation mode in the simulated mixed-phase cloud is contact freezing of droplets. Sensitivity tests indicate that the assumed number and size of contact nuclei can have a large impact on the evolution and characteristics of mixed-phase cloud, especially the partitioning of condensate between droplets and ice.
    • Download: (1.337Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mesoscale Modeling of Springtime Arctic Mixed-Phase Stratiform Clouds Using a New Two-Moment Bulk Microphysics Scheme

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218121
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMorrison, H.
    contributor authorPinto, J. O.
    date accessioned2017-06-09T16:52:32Z
    date available2017-06-09T16:52:32Z
    date copyright2005/10/01
    date issued2005
    identifier issn0022-4928
    identifier otherams-75751.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218121
    description abstractA new two-moment bulk microphysics scheme is implemented into the polar version of the fifth-generation Pennsylvania State University?NCAR Mesoscale Model (MM5) to simulate arctic mixed-phase boundary layer stratiform clouds observed during Surface Heat Budget of the Arctic (SHEBA) First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Arctic Cloud Experiment (ACE). The microphysics scheme predicts the number concentrations and mixing ratios of four hydrometeor species (cloud droplets, small ice, rain, snow) and includes detailed treatments of droplet activation and ice nucleation from a prescribed distribution of aerosol obtained from observations. The model is able to reproduce many features of the observed mixed-phase cloud, including a near-adiabatic liquid water content profile located near the top of a well-mixed boundary layer, droplet number concentrations of about 200?250 cm?3 that were distributed fairly uniformly through the depth of the cloud, and continuous light snow falling from the cloud base to the surface. The impacts of droplet and ice nucleation, radiative transfer, turbulence, large-scale dynamics, and vertical resolution on the simulated mixed-phase stratiform cloud are examined. The cloud layer is largely self-maintained through strong cloud-top radiative cooling that exceeds 40 K day?1. It persists through extended periods of downward large-scale motion that tend to thin the layer and reduce water contents. Droplet activation rates are highest near cloud base, associated with subgrid vertical motion that is diagnosed from the predicted turbulence kinetic energy. A sensitivity test neglecting subgrid vertical velocity produces only weak activation and small droplet number concentrations (<90 cm?3). These results highlight the importance of parameterizing the impact of subgrid vertical velocity to generate local supersaturation for aerosol-droplet closure. The primary ice nucleation mode in the simulated mixed-phase cloud is contact freezing of droplets. Sensitivity tests indicate that the assumed number and size of contact nuclei can have a large impact on the evolution and characteristics of mixed-phase cloud, especially the partitioning of condensate between droplets and ice.
    publisherAmerican Meteorological Society
    titleMesoscale Modeling of Springtime Arctic Mixed-Phase Stratiform Clouds Using a New Two-Moment Bulk Microphysics Scheme
    typeJournal Paper
    journal volume62
    journal issue10
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3564.1
    journal fristpage3683
    journal lastpage3704
    treeJournal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian