YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mesoscale Observations of the Genesis of Hurricane Dolly (1996)

    Source: Journal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 009::page 3151
    Author:
    Reasor, Paul D.
    ,
    Montgomery, Michael T.
    ,
    Bosart, Lance F.
    DOI: 10.1175/JAS3540.1
    Publisher: American Meteorological Society
    Abstract: Recent numerical studies of tropical cyclone genesis suggest a new paradigm for how the surface vortex is established based on a highly nonaxisymmetric mechanism involving the interaction of low-level cyclonic circulations generated by deep cumulonimbus convection. A reexamination of mesoscale observations during the genesis of Hurricane Guillermo (1991) confirms the presence of multiple cyclonic circulations. More recently, airborne Doppler radar wind observations during the genesis of Atlantic Hurricane Dolly (1996) also reveal multiple lower-to-middle-tropospheric mesoscale cyclonic circulations during sequential 15?20-min compositing periods. A particularly well-organized, but initially weak (mean tangential wind of 7 m s?1), low-level cyclonic vortex embedded within the pre-Dolly tropical disturbance is observed coincident with deep, vertically penetrating cumulonimbus convection. The earliest observations of this vortex show the peak circulation near 2-km height with a mean diameter of 30?40 km. The circulation undergoes a slight intensification over a 2-h period, with the maximum tangential winds ultimately peaking below 1-km height. Approximately 18 h after these observations Dolly is classified as a hurricane by the National Hurricane Center. A synthesis of observations during the early development of Dolly supports a stochastic view of tropical cyclone genesis in which multiple lower-to-middle-tropospheric mesoscale cyclonic circulations are involved in building the surface cyclonic circulation. It is suggested that, in particular, the interaction of low-level circulations generated by a series of deep cumulonimbus convective events, like the one documented here, within an environment of elevated cyclonic vorticity was instrumental to the formation of the Dolly surface vortex.
    • Download: (1.501Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mesoscale Observations of the Genesis of Hurricane Dolly (1996)

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218095
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorReasor, Paul D.
    contributor authorMontgomery, Michael T.
    contributor authorBosart, Lance F.
    date accessioned2017-06-09T16:52:28Z
    date available2017-06-09T16:52:28Z
    date copyright2005/09/01
    date issued2005
    identifier issn0022-4928
    identifier otherams-75727.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218095
    description abstractRecent numerical studies of tropical cyclone genesis suggest a new paradigm for how the surface vortex is established based on a highly nonaxisymmetric mechanism involving the interaction of low-level cyclonic circulations generated by deep cumulonimbus convection. A reexamination of mesoscale observations during the genesis of Hurricane Guillermo (1991) confirms the presence of multiple cyclonic circulations. More recently, airborne Doppler radar wind observations during the genesis of Atlantic Hurricane Dolly (1996) also reveal multiple lower-to-middle-tropospheric mesoscale cyclonic circulations during sequential 15?20-min compositing periods. A particularly well-organized, but initially weak (mean tangential wind of 7 m s?1), low-level cyclonic vortex embedded within the pre-Dolly tropical disturbance is observed coincident with deep, vertically penetrating cumulonimbus convection. The earliest observations of this vortex show the peak circulation near 2-km height with a mean diameter of 30?40 km. The circulation undergoes a slight intensification over a 2-h period, with the maximum tangential winds ultimately peaking below 1-km height. Approximately 18 h after these observations Dolly is classified as a hurricane by the National Hurricane Center. A synthesis of observations during the early development of Dolly supports a stochastic view of tropical cyclone genesis in which multiple lower-to-middle-tropospheric mesoscale cyclonic circulations are involved in building the surface cyclonic circulation. It is suggested that, in particular, the interaction of low-level circulations generated by a series of deep cumulonimbus convective events, like the one documented here, within an environment of elevated cyclonic vorticity was instrumental to the formation of the Dolly surface vortex.
    publisherAmerican Meteorological Society
    titleMesoscale Observations of the Genesis of Hurricane Dolly (1996)
    typeJournal Paper
    journal volume62
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3540.1
    journal fristpage3151
    journal lastpage3171
    treeJournal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian