YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Study of the 10 January 1998 Lake-Effect Bands Observed during Lake-ICE

    Source: Journal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 009::page 3232
    Author:
    Tripoli, Gregory J.
    DOI: 10.1175/JAS3462.1
    Publisher: American Meteorological Society
    Abstract: This paper presents the results of a series of idealized cloud resolving simulations of the evolution of moist roll convection observed as part of the Lake-Induced Convection Experiment (Lake-ICE) that took place during the 1997/98 winter over central Lake Michigan. Satellite and radar observations of the roll convection depict striking linear rolls stretching from 10 km off the western shore of the lake, across to the eastern shore, and then continuing across Michigan. The spacing of the primary rolls was observed to be 6 km, giving a ratio of spacing to depth of about 5:1, which is consistent with theory. In addition, a longer wavelength (13 km) of stationary banding was observed parallel to the shoreline. In an earlier study of this case, multiply nested simulations of the convective rolls based on real data variable initialization were successful in producing banded structures with similar spacing and location over the water to those observed using fine grid resolution of about 500 m. Unfortunately, the initial locations of simulated bands were organized primarily by numerical effects of grid interpolation. This suggested that the spacing of the bands was robust, but that their initial location was highly sensitive to subtle systematic forcings. In this paper, a set of idealized model experiments, designed to isolate the role that physically realistic local forcing plays in the organization of the rolls, was performed. Because externally generated upstream turbulence was suppressed in these tests so as not to bias the result, the generation of rolls was delayed until 20?30 km downwind of the observed location and the location simulated in the previous grid nesting experiments. It was shown that the subtle effects of the shoreline geometry were sufficient to spawn a near-surface streamwise vorticity that became the primary seed for roll development at the most efficient mode of roll convection. These results suggest that previous structures evolved in the upstream shear-driven land-based mixed layer were likely also important in determining where the nonlocal overturning was first triggered. It is not clear from these results whether the shear-driven structures that evolved over the land also played a significant role in organizing the structural geometry of the lake rolls. Results also suggested that the shore parallel bands were a robust feature of the atmospheric structure resulting from resonant gravity wave trapping in the frontal layer.
    • Download: (1.174Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Study of the 10 January 1998 Lake-Effect Bands Observed during Lake-ICE

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218008
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorTripoli, Gregory J.
    date accessioned2017-06-09T16:52:15Z
    date available2017-06-09T16:52:15Z
    date copyright2005/09/01
    date issued2005
    identifier issn0022-4928
    identifier otherams-75649.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218008
    description abstractThis paper presents the results of a series of idealized cloud resolving simulations of the evolution of moist roll convection observed as part of the Lake-Induced Convection Experiment (Lake-ICE) that took place during the 1997/98 winter over central Lake Michigan. Satellite and radar observations of the roll convection depict striking linear rolls stretching from 10 km off the western shore of the lake, across to the eastern shore, and then continuing across Michigan. The spacing of the primary rolls was observed to be 6 km, giving a ratio of spacing to depth of about 5:1, which is consistent with theory. In addition, a longer wavelength (13 km) of stationary banding was observed parallel to the shoreline. In an earlier study of this case, multiply nested simulations of the convective rolls based on real data variable initialization were successful in producing banded structures with similar spacing and location over the water to those observed using fine grid resolution of about 500 m. Unfortunately, the initial locations of simulated bands were organized primarily by numerical effects of grid interpolation. This suggested that the spacing of the bands was robust, but that their initial location was highly sensitive to subtle systematic forcings. In this paper, a set of idealized model experiments, designed to isolate the role that physically realistic local forcing plays in the organization of the rolls, was performed. Because externally generated upstream turbulence was suppressed in these tests so as not to bias the result, the generation of rolls was delayed until 20?30 km downwind of the observed location and the location simulated in the previous grid nesting experiments. It was shown that the subtle effects of the shoreline geometry were sufficient to spawn a near-surface streamwise vorticity that became the primary seed for roll development at the most efficient mode of roll convection. These results suggest that previous structures evolved in the upstream shear-driven land-based mixed layer were likely also important in determining where the nonlocal overturning was first triggered. It is not clear from these results whether the shear-driven structures that evolved over the land also played a significant role in organizing the structural geometry of the lake rolls. Results also suggested that the shore parallel bands were a robust feature of the atmospheric structure resulting from resonant gravity wave trapping in the frontal layer.
    publisherAmerican Meteorological Society
    titleNumerical Study of the 10 January 1998 Lake-Effect Bands Observed during Lake-ICE
    typeJournal Paper
    journal volume62
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3462.1
    journal fristpage3232
    journal lastpage3249
    treeJournal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian