YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cyclogenetic Perturbations and Analysis Errors Decomposed into Singular Vectors

    Source: Journal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 007::page 2234
    Author:
    Snyder, Chris
    ,
    Hakim, Gregory J.
    DOI: 10.1175/JAS3458.1
    Publisher: American Meteorological Society
    Abstract: Singular vectors (SVs) have been applied to cyclogenesis, to initializing ensemble forecasts, and in predictability studies. Ideally, the calculation of the SVs would employ the analysis error covariance norm at the initial time or, in the case of cyclogenesis, a norm based on the statistics of initial perturbations, but the energy norm is often used as a more practical substitute. To illustrate the roles of the choice of norm and the vertical structure of initial perturbations, an upper-level wave with no potential vorticity perturbation in the troposphere is considered as a typical cyclogenetic perturbation or analysis error, and this perturbation is then decomposed by its projection onto each energy SV. All calculations are made, for simplicity, in the context of the quasigeostrophic Eady model (i.e., for a background flow with constant vertical shear and horizontal temperature gradient). Viewed in terms of the energy SVs, the smooth vertical structure of the typical perturbation, as well as its evolution, results from strong cancellation between the growing and decaying SVs, most of which are highly structured and tilted in the vertical. A simpler picture, involving less cancellation, follows from decomposition of the typical perturbation into SVs using an alternative initial norm, which is based on the relation between initial norms and the statistics of initial perturbations together with the empirical assumption that the initial perturbations are not dominated by interior potential vorticity. Differences between the energy SVs and those based on the alternative initial norm can be understood by noting that the energy norm implicitly assumes initial perturbations with second-order statistics given by the covariance matrix whose inverse defines the energy norm. Unlike the ?typical? perturbation, perturbations with those statistics have large variance of potential vorticity in the troposphere and fine vertical structure. Finally, a brief assessment is presented of the extent to which the upper wave, and more generally the alternative initial norm, is representative of cyclogenetic perturbations and analysis errors. There is substantial evidence supporting deep perturbations with little vertical structure as frequent precursors to cyclogenesis, but surrogates for analysis errors are less conclusive: operational midlatitude analysis differences have vertical structure similar to that of the perturbations implied by the energy norm, while short-range forecast errors and analysis errors from assimilation experiments with simulated observations are more consistent with the alternative norm.
    • Download: (407.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cyclogenetic Perturbations and Analysis Errors Decomposed into Singular Vectors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218004
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSnyder, Chris
    contributor authorHakim, Gregory J.
    date accessioned2017-06-09T16:52:15Z
    date available2017-06-09T16:52:15Z
    date copyright2005/07/01
    date issued2005
    identifier issn0022-4928
    identifier otherams-75645.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218004
    description abstractSingular vectors (SVs) have been applied to cyclogenesis, to initializing ensemble forecasts, and in predictability studies. Ideally, the calculation of the SVs would employ the analysis error covariance norm at the initial time or, in the case of cyclogenesis, a norm based on the statistics of initial perturbations, but the energy norm is often used as a more practical substitute. To illustrate the roles of the choice of norm and the vertical structure of initial perturbations, an upper-level wave with no potential vorticity perturbation in the troposphere is considered as a typical cyclogenetic perturbation or analysis error, and this perturbation is then decomposed by its projection onto each energy SV. All calculations are made, for simplicity, in the context of the quasigeostrophic Eady model (i.e., for a background flow with constant vertical shear and horizontal temperature gradient). Viewed in terms of the energy SVs, the smooth vertical structure of the typical perturbation, as well as its evolution, results from strong cancellation between the growing and decaying SVs, most of which are highly structured and tilted in the vertical. A simpler picture, involving less cancellation, follows from decomposition of the typical perturbation into SVs using an alternative initial norm, which is based on the relation between initial norms and the statistics of initial perturbations together with the empirical assumption that the initial perturbations are not dominated by interior potential vorticity. Differences between the energy SVs and those based on the alternative initial norm can be understood by noting that the energy norm implicitly assumes initial perturbations with second-order statistics given by the covariance matrix whose inverse defines the energy norm. Unlike the ?typical? perturbation, perturbations with those statistics have large variance of potential vorticity in the troposphere and fine vertical structure. Finally, a brief assessment is presented of the extent to which the upper wave, and more generally the alternative initial norm, is representative of cyclogenetic perturbations and analysis errors. There is substantial evidence supporting deep perturbations with little vertical structure as frequent precursors to cyclogenesis, but surrogates for analysis errors are less conclusive: operational midlatitude analysis differences have vertical structure similar to that of the perturbations implied by the energy norm, while short-range forecast errors and analysis errors from assimilation experiments with simulated observations are more consistent with the alternative norm.
    publisherAmerican Meteorological Society
    titleCyclogenetic Perturbations and Analysis Errors Decomposed into Singular Vectors
    typeJournal Paper
    journal volume62
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3458.1
    journal fristpage2234
    journal lastpage2247
    treeJournal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian