YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulations of the Atmospheric General Circulation Using a Cloud-Resolving Model as a Superparameterization of Physical Processes

    Source: Journal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 007::page 2136
    Author:
    Khairoutdinov, Marat
    ,
    Randall, David
    ,
    DeMott, Charlotte
    DOI: 10.1175/JAS3453.1
    Publisher: American Meteorological Society
    Abstract: Traditionally, the effects of clouds in GCMs have been represented by semiempirical parameterizations. Recently, a cloud-resolving model (CRM) was embedded into each grid column of a realistic GCM, the NCAR Community Atmosphere Model (CAM), to serve as a superparameterization (SP) of clouds. Results of the standard CAM and the SP-CAM are contrasted, both using T42 resolution (2.8° ? 2.8° grid), 26 vertical levels, and up to a 500-day-long simulation. The SP was based on a two-dimensional (2D) CRM with 64 grid columns and 24 levels collocated with the 24 lowest levels of CAM. In terms of the mean state, the SP-CAM produces quite reasonable geographical distributions of precipitation, precipitable water, top-of-the-atmosphere radiative fluxes, cloud radiative forcing, and high-cloud fraction for both December?January?February and June?July?August. The most notable and persistent precipitation bias in the western Pacific, during the Northern Hemisphere summer of all the SP-CAM runs with 2D SP, seems to go away through the use of a small-domain three-dimensional (3D) SP with the same number of grid columns as the 2D SP, but arranged in an 8 ? 8 square with identical horizontal resolution of 4 km. Two runs with the 3D SP have been carried out, with and without explicit large-scale momentum transport by convection. Interestingly, the double ITCZ feature seems to go away in the run that includes momentum transport. The SP improves the diurnal variability of nondrizzle precipitation frequency over the standard model by precipitating most frequently during late afternoon hours over the land, as observed, while the standard model maximizes its precipitation frequency around local solar noon. Over the ocean, both models precipitate most frequently in the early morning hours as observed. The SP model also reproduces the observed global distribution of the percentage of days with nondrizzle precipitation rather well. In contrast, the standard model tends to precipitate more frequently, on average by about 20%?30%. The SP model seems to improve the convective intraseasonal variability over the standard model. Preliminary results suggest that the SP produces more realistic variability of such fields as 200-mb wind and OLR, relative to the control, including the often poorly simulated Madden?Julian oscillation (MJO).
    • Download: (1.826Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulations of the Atmospheric General Circulation Using a Cloud-Resolving Model as a Superparameterization of Physical Processes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217998
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKhairoutdinov, Marat
    contributor authorRandall, David
    contributor authorDeMott, Charlotte
    date accessioned2017-06-09T16:52:14Z
    date available2017-06-09T16:52:14Z
    date copyright2005/07/01
    date issued2005
    identifier issn0022-4928
    identifier otherams-75640.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217998
    description abstractTraditionally, the effects of clouds in GCMs have been represented by semiempirical parameterizations. Recently, a cloud-resolving model (CRM) was embedded into each grid column of a realistic GCM, the NCAR Community Atmosphere Model (CAM), to serve as a superparameterization (SP) of clouds. Results of the standard CAM and the SP-CAM are contrasted, both using T42 resolution (2.8° ? 2.8° grid), 26 vertical levels, and up to a 500-day-long simulation. The SP was based on a two-dimensional (2D) CRM with 64 grid columns and 24 levels collocated with the 24 lowest levels of CAM. In terms of the mean state, the SP-CAM produces quite reasonable geographical distributions of precipitation, precipitable water, top-of-the-atmosphere radiative fluxes, cloud radiative forcing, and high-cloud fraction for both December?January?February and June?July?August. The most notable and persistent precipitation bias in the western Pacific, during the Northern Hemisphere summer of all the SP-CAM runs with 2D SP, seems to go away through the use of a small-domain three-dimensional (3D) SP with the same number of grid columns as the 2D SP, but arranged in an 8 ? 8 square with identical horizontal resolution of 4 km. Two runs with the 3D SP have been carried out, with and without explicit large-scale momentum transport by convection. Interestingly, the double ITCZ feature seems to go away in the run that includes momentum transport. The SP improves the diurnal variability of nondrizzle precipitation frequency over the standard model by precipitating most frequently during late afternoon hours over the land, as observed, while the standard model maximizes its precipitation frequency around local solar noon. Over the ocean, both models precipitate most frequently in the early morning hours as observed. The SP model also reproduces the observed global distribution of the percentage of days with nondrizzle precipitation rather well. In contrast, the standard model tends to precipitate more frequently, on average by about 20%?30%. The SP model seems to improve the convective intraseasonal variability over the standard model. Preliminary results suggest that the SP produces more realistic variability of such fields as 200-mb wind and OLR, relative to the control, including the often poorly simulated Madden?Julian oscillation (MJO).
    publisherAmerican Meteorological Society
    titleSimulations of the Atmospheric General Circulation Using a Cloud-Resolving Model as a Superparameterization of Physical Processes
    typeJournal Paper
    journal volume62
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3453.1
    journal fristpage2136
    journal lastpage2154
    treeJournal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian