YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    ITCZ Breakdown in Three-Dimensional Flows

    Source: Journal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 005::page 1497
    Author:
    Wang, Chia-chi
    ,
    Magnusdottir, Gudrun
    DOI: 10.1175/JAS3409.1
    Publisher: American Meteorological Society
    Abstract: The intertropical convergence zone (ITCZ) is observed to undulate and at times break down into a series of tropical disturbances in several days. Some of these disturbances may develop into tropical cyclones and move to higher latitudes, while others dissipate, and the ITCZ may reform in the original region. It has been proposed that the ITCZ may break down because of its heating-induced potential vorticity (PV) anomalies. Here this process is examined in three-dimensional simulations using a primitive equation model. A simulation of the ITCZ in a background state of rest is compared to simulations in different background flows. The effect of different vertical structures of the prescribed heating is also examined. Deep heating induces a positive PV anomaly in the lower troposphere, leading to a reversal of the PV gradient on the poleward side of the heating, while the induced PV anomaly at upper levels is negative, leading to a reversal of the PV gradient on the equatorward side of the heating. The response at upper levels leads to a weaker PV gradient change, but the response is greater in areal extent than the lower-tropospheric response. For shallow heating, the lower-tropospheric PV response is greater than that for deep heating, and there is no upper-tropospheric PV response. The ITCZ lasts longer before breaking in this case than in the deep heating case. Effects of the background flow are mainly felt in the deep heating cases. When the background flow enforces the PV-induced wind field, ITCZ breakdown occurs more rapidly, whereas when the background flow is opposite to the PV-induced flow, ITCZ breakdown takes longer and the ITCZ may dissipate before breakdown.
    • Download: (3.039Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      ITCZ Breakdown in Three-Dimensional Flows

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217950
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorWang, Chia-chi
    contributor authorMagnusdottir, Gudrun
    date accessioned2017-06-09T16:52:08Z
    date available2017-06-09T16:52:08Z
    date copyright2005/05/01
    date issued2005
    identifier issn0022-4928
    identifier otherams-75597.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217950
    description abstractThe intertropical convergence zone (ITCZ) is observed to undulate and at times break down into a series of tropical disturbances in several days. Some of these disturbances may develop into tropical cyclones and move to higher latitudes, while others dissipate, and the ITCZ may reform in the original region. It has been proposed that the ITCZ may break down because of its heating-induced potential vorticity (PV) anomalies. Here this process is examined in three-dimensional simulations using a primitive equation model. A simulation of the ITCZ in a background state of rest is compared to simulations in different background flows. The effect of different vertical structures of the prescribed heating is also examined. Deep heating induces a positive PV anomaly in the lower troposphere, leading to a reversal of the PV gradient on the poleward side of the heating, while the induced PV anomaly at upper levels is negative, leading to a reversal of the PV gradient on the equatorward side of the heating. The response at upper levels leads to a weaker PV gradient change, but the response is greater in areal extent than the lower-tropospheric response. For shallow heating, the lower-tropospheric PV response is greater than that for deep heating, and there is no upper-tropospheric PV response. The ITCZ lasts longer before breaking in this case than in the deep heating case. Effects of the background flow are mainly felt in the deep heating cases. When the background flow enforces the PV-induced wind field, ITCZ breakdown occurs more rapidly, whereas when the background flow is opposite to the PV-induced flow, ITCZ breakdown takes longer and the ITCZ may dissipate before breakdown.
    publisherAmerican Meteorological Society
    titleITCZ Breakdown in Three-Dimensional Flows
    typeJournal Paper
    journal volume62
    journal issue5
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3409.1
    journal fristpage1497
    journal lastpage1512
    treeJournal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian