The Eastern Pacific ITCZ during the Boreal SpringSource: Journal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 004::page 1157DOI: 10.1175/JAS3402.1Publisher: American Meteorological Society
Abstract: The 6-yr (1998?2003) rainfall products from the Tropical Rainfall Measuring Mission (TRMM) are used to quantify the intertropical convergence zone (ITCZ) in the eastern Pacific (defined by longitudinal averages over 90°?130°W) during boreal spring (March?April). The double-ITCZ phenomenon, represented by the occurrence of two maxima with respect to latitude in monthly mean rainfall, is observed in most but not all of the years studied. The relative spatial locations of maxima in sea surface temperature (SST), rainfall, and surface pressure are examined. Interannual and weekly variability are characterized in SST, rainfall, surface convergence, total column water vapor, and cloud water. There appears to be a competition for rainfall between the two hemispheres during this season. When one of the two rainfall maxima is particularly strong, the other tends to be weak, with the total rainfall integrated over the two varying less than does the difference between the rainfall integrated over each separately. There is some evidence for a similar competition between the SST maxima in the two hemispheres, but this is more ambiguous, and there is evidence that some variations in the relative strengths of the two rainfall maxima may be independent of SST. Using a 25-yr (1979?2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP), four distinct ITCZ types during March?April are defined, based on the relative strengths of rainfall peaks north and south of, and right over, the equator. Composite meridional profiles and spatial distributions of rainfall and SST are documented for each type. Consistent with previous studies, an equatorial cold tongue is essential to the existence of the double ITCZs. However, too strong a cold tongue may dampen either the southern or northern rainfall maximum, depending on the magnitude of SST north of the equator.
|
Collections
Show full item record
| contributor author | Gu, Guojun | |
| contributor author | Adler, Robert F. | |
| contributor author | Sobel, Adam H. | |
| date accessioned | 2017-06-09T16:52:05Z | |
| date available | 2017-06-09T16:52:05Z | |
| date copyright | 2005/04/01 | |
| date issued | 2005 | |
| identifier issn | 0022-4928 | |
| identifier other | ams-75590.pdf | |
| identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4217942 | |
| description abstract | The 6-yr (1998?2003) rainfall products from the Tropical Rainfall Measuring Mission (TRMM) are used to quantify the intertropical convergence zone (ITCZ) in the eastern Pacific (defined by longitudinal averages over 90°?130°W) during boreal spring (March?April). The double-ITCZ phenomenon, represented by the occurrence of two maxima with respect to latitude in monthly mean rainfall, is observed in most but not all of the years studied. The relative spatial locations of maxima in sea surface temperature (SST), rainfall, and surface pressure are examined. Interannual and weekly variability are characterized in SST, rainfall, surface convergence, total column water vapor, and cloud water. There appears to be a competition for rainfall between the two hemispheres during this season. When one of the two rainfall maxima is particularly strong, the other tends to be weak, with the total rainfall integrated over the two varying less than does the difference between the rainfall integrated over each separately. There is some evidence for a similar competition between the SST maxima in the two hemispheres, but this is more ambiguous, and there is evidence that some variations in the relative strengths of the two rainfall maxima may be independent of SST. Using a 25-yr (1979?2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP), four distinct ITCZ types during March?April are defined, based on the relative strengths of rainfall peaks north and south of, and right over, the equator. Composite meridional profiles and spatial distributions of rainfall and SST are documented for each type. Consistent with previous studies, an equatorial cold tongue is essential to the existence of the double ITCZs. However, too strong a cold tongue may dampen either the southern or northern rainfall maximum, depending on the magnitude of SST north of the equator. | |
| publisher | American Meteorological Society | |
| title | The Eastern Pacific ITCZ during the Boreal Spring | |
| type | Journal Paper | |
| journal volume | 62 | |
| journal issue | 4 | |
| journal title | Journal of the Atmospheric Sciences | |
| identifier doi | 10.1175/JAS3402.1 | |
| journal fristpage | 1157 | |
| journal lastpage | 1174 | |
| tree | Journal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 004 | |
| contenttype | Fulltext |